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Abstract

Despite progresses in ancestral protein sequence reconstruction, much needs to be unraveled about the nature of the
putative last common ancestral proteome that served as the prototype of all extant lifeforms. Here, we present data that
indicate a steady decline (oil escape) in proteome hydrophobicity over species evolvedness (node number) evident in 272
diverse proteomes, which indicates a highly hydrophobic (oily) last common ancestor (LCA). This trend, obtained from
simple considerations (free from sequence reconstruction methods), was corroborated by regression studies within
homologous and orthologous protein clusters as well as phylogenetic estimates of the ancestral oil content. While
indicating an inherent irreversibility in molecular evolution, oil escape also serves as a rare and universal reaction-coordinate
for evolution (reinforcing Darwin’s principle of Common Descent), and may prove important in matters such as (i) explaining
the emergence of intrinsically disordered proteins, (ii) developing composition- and speciation-based ‘‘global’’ molecular
clocks, and (iii) improving the statistical methods for ancestral sequence reconstruction.
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Introduction

What did the proteome of the first successful lifeform look like?

This question is critical to the understanding of how life as we

know it first began on earth. Despite the progresses in ancestral

sequence reconstruction methods [1–3], predicting the proteome

of the Last Common Ancestor (LCA) from today’s proteomes is

impeded by the inevitable accumulated errors implicit in any

extrapolation method [4]. Also, while interesting predictions

regarding ancestral genome behavior can be made [5,6], the

sequence reconstruction methods utilized to make those predic-

tions are fraught with precarious (or even potentially ‘‘flawed’’)

presuppositions [7–11]. Here we re-address the question of what

the composition of the LCA may have been, and provide an

answer sourced from simple considerations that our LCA might

have had a highly hydrophobic (oily) proteome, which has slowly

been equilibrating over evolutionary time. The results are

obtained independently of sequence reconstruction methods and

previously published statistical techniques [1–3,5,6], which pro-

vides a method-independent snapshot into the molecular nature of

the last common ancestor.

It is important to first introduce the notion that proteome

compositions equilibrate at ‘‘glacial’’ speeds (over billions of years;

Section S1.1 in Text S1, and discussed below), which will be

important in extrapolating trends obtained from present pro-

teomes to properties of the LCA’s proteome. While mutations

accumulate within a proteome at a relatively steady rate (to the

order of about 1 substitution per billion years per nucleotide site

[12]), the oil composition of that proteome–described as the

cumulative percent composition within the sequence (%FILV) of

the four most hydrophobic residues as per the Kyte-Doolittle scale

[Phenylalanine (F), Isoleucine (I), Leucine (L) and Valine (V)]–is

expected to change at a much slower rate due to reasons such as

the proteome’s massive size (Section S1.1 in Text S1) and the

biochemical impediments associated with drastically changing a

protein’s composition (Section S1.2 in Text S1). Given this

expected glacial drift/equilibration in proteome composition, in

accordance with previous discussions [5], one can expect one of

three general trends in the change of proteome oil content over

even large evolutionary time (negative, neutral or positive

correlations which is dependent on the LCA’s original proteome

oil content; Figure 1).

Also important to tracking changes in oil content over

evolutionary time is the finding that, although all species have

existed in some form for equal amounts of physical time (an

expected outcome of common descent), their genomes are not

equally deviated from the last common ancestor (Sections S1.3

and S1.4 in Text S1); the number of non-synonymous

nucleotide substitutions accumulated since emerging from the

LCA appears to be proportional to the number of speciation

events that the species has encountered sans phylogenetic

errors [13–15]. What this indicates is that, while a component

of molecular evolution is due to the ‘‘constantly ticking’’

molecular clock caused by neutral or nearly neutral mutations

[16–19], another component of genetic deviation from the

LCA may be attributed to substitutions associated with
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speciation events (roughly proportional to species node

number in the tree of life; see Methods), even though the

exact extent and mechanism of substitutions in this regime is

not known [15]. Importantly, it is especially expected that

substitutions causing changes in oil content, due to being quite

the opposite of neutral in fitness effects (Section S1.2 in Text

S1), are expected to dominantly occur not during neutral drift

but during the non-neutral component of molecular evolution,

i.e., in events such as speciation (Section S1.4 in Text S1).

In this report, we use species node number as a measure of

evolutionary age or ‘‘deviatedness’’ from the LCA (also roughly

proportional to organismal complexity) to study the changes in

proteome and protein composition over evolutionary time. While

this study may be susceptible to the various expected local

inaccuracies involved in building the tree of life (ToL), the global

trend–that lower node-number organisms are ‘‘older’’ genomes

with less genomic deviation from the LCA–is a notion that is

acceptable, and such a precedence has been set [13–15,20].

Additionally, given our interest in finding potential low-resolution

or global trends over evolutionary time, the utility of node number

is uniquely warranted.

Results

A common trend (‘‘oil escape’’) observed across all
proteomes

We obtained and studied all of the proteomes available within

the Ensembl genome databases (272 diverse proteomes belonging

to 152 distinct species sourced from all domains of life; listed in

Section S5 in Text S1) for a relationship between a species node

number and its proteome oil content. Remarkably, the proteomes

displayed a striking, universal relationship between the proteome

oil content (%FILV), and the species node number in both

individual Ensembl databases (Figure 2A; annotated axes in each

panel are different and elaborated in Figure S1A in Text S1) and

the merged data (Figure 2B), which is unexpected given the high

diversity of the proteomes studied and the coarse nature of the

ToL. Other metrics for oil content (hydrophobicity scales) showed

similar results (Figure S2 in Text S1); however, %FILV provided

the strictest trend and so is kept as the main metric henceforth.

Given the highly diverse nature of the organisms in our

collection, environmental variables are not expected to contribute

strongly to this universal trend (also discussed later in Other

Trends); Oil escape is also reasserted (albeit loosely) by paleobi-

ological records, where the relationship between proteome oil

content and genus-level First Occurrence (FO) records is also

negative (Figure 2C; see Methods). The FO records are not

Figure 1. Three scenarios exist for the monotonic drift or
evolution of oil content over time, predicated upon whether
the last common ancestor’s oil content is higher (A), equal (B)
or lower (C) than the oil content that is expected from
sequence entropy considerations.
doi:10.1371/journal.pcbi.1002839.g001

Figure 2. Proteome oil content reduces over ‘‘evolutionary
time’’. Proteome databases, both individually (A; detailed in Figure S1
in Text S1) and cumulatively (B; number of data points, N~152),
indicate a steady reduction in proteome oil content (%FILV) over
evolutionary time (organism node number), with a Spearman rank
correlation coefficient rs~0:84 and probability p{value~4:6|10{43.
Another metric for evolutionary age (paleobiology’s ‘‘First Occurrence’’
records; C) reiterates this trend (Spearman rs~0:43, p{value~0:0012,
N~43; improved to rs~0:83, p{value~0:00014 when binned per the
abscissa), indicating the existence of a ‘‘super-oily’’ predecessor to all
that exists. The three archeal proteomes obtained from Ensembl
Bacteria are denoted by the blue-filled circles in (A, top) and (B).
doi:10.1371/journal.pcbi.1002839.g002

Author Summary

Although of importance to both evolution and protein
design, the manner in which the first proteome came to
be, and the actual features of the earliest ancestral
proteomes are both unknown. Through the analysis of
diverse proteomes, we provide glimpses into the compo-
sition of the last common ancestor (LUCA) of all lifeforms,
which indicate that the earliest/last common ancestor had
a proteome that was highly hydrophobic/oily. Notably, the
evidence presented (a) indicates that proteomes of all
species ranging from bacteria to mammals appear to
adhere to the same universal constraint (‘‘oil escape’’) set
into motion by the last common ancestor more than 3.5
billion years ago, (b) indicates the presence of a previously
untapped global (composition-level) molecular clock, and
(c) strengthens the non-equilibrium/directional view of
amino acid substitutions that challenges central dogmas
regarding reversibility in molecular evolution.

Oily LCA

PLOS Computational Biology | www.ploscompbiol.org 2 December 2012 | Volume 8 | Issue 12 | e1002839



necessarily sufficient evidence for oil escape, but rather are

referenced for their potential utility of a paleo-geological metric for

time (FO dates) in replacing the more abstract node number,

which, if possible, would make oil composition a ‘‘global’’

molecular clock (discussed later). Our hope is that Figure 2C

may inspire the further collection and utilization of more FO data

to that aim.

Oil escape adherence at the protein level
Here we show that ‘‘oil escape’’ occurs not only at the

proteome level, but also at the individual protein composition

level (which is evidenced by changes in oil content in groups of

homologous, and later, orthologous, proteins over organism

node space). Our ‘‘single protein’’ studies were performed on

clusters of protein sequences homologous to ‘‘seed’’ protein

domains listed in the SCOP database (v1.75, redundancy

ƒ10%) [21]. Within a cluster, each proteome was represented

at most once, and homology was ascertained by BLAST-P’s

default values [22].

Interestingly, protein-resolution oil escapes, explicitly shown for

three homologous clusters in Figure 3A and indicated by negative

Spearman’s correlation coefficients rs, are not chance events as

would be naı̈vely expected, but are the dominantly occurring

trends among homologous clusters, with over 92.4% of the 5809

homologous protein clusters describing a decline in oil content

over node space (Figure 3B). If we discount the statistically

insignificant trends (i.e., if we omit those clusters showing two-

tailed p{valuew0:05 or DrsDv0:2, see Figure 3C), then the

clusters displaying oil escape further increases to a compelling

97.8% of the 4518 viable clusters (also, analysis of clusters specific

to individual Ensemble databases also resulted in qualitatively

identical results; Figure S13 in Text S1). Figure 3B cannot be

explained by the addition of more hydrophilic domains to a

sequence over time, since 87.8% of the 4222 statistically significant

(p{valuev0:05) size-homogenized clusters display oil escape (here,

size-homogeneity was ensured by culling all sequences that differ

in length from the seed sequence by 20%; data not shown). Also,

the decrease in oil content over node number is not expected to

occur predominantly due to the addition of hydrophilic loops over

node number as homologous clusters do not display a bias towards

negative relationships between oil content and protein length

within homologous clusters (Figure S9 in Text S1).

The homologous clusters of proteins used in Figure 3 contain

protein pairs related by both orthologous and paralogous

relationships (i.e., the proteins can either be related by direct

descent, or by duplication and then descent, respectively), and the

paralogous relatives in the cluster may cause inaccuracies in gene

classification at the functional level [23], although our broad

protein-fold resolution of inquiry may not elicit such issues. Still,

the same study was carried out among smaller clusters of purely

orthologous proteins (COGs database [24]), which also predom-

inantly displayed oil escape among clusters describing significant

trends (Figure S10B in Text S1); interestingly, including paralogs

into the clusters (Figure S10A in Text S1) reduces the extent of oil

escape observed, which indicates that Figure 3 may even be

underestimating the extent of oil escape actually occurring.

These data, when consolidated, indicate that a large majority of

proteins (homologs, orthologs, and individual domains) display

marked oil escape, which reiterates the proteome-level studies in

Figure 2, all of which indicate that more ancient proteomes (and

so, by extrapolation, the LCA) display oilier residues (and,

incidentally, fewer ‘‘specificity incurring’’ residues; see Figure S3

in Text S1) than the newcomers.

Use of comparative methods
Despite the rough (coarse grained) nature of the utilized tree of

life (ToL), the trend evident in Figure 2 is interesting, since a

common trend–oil escape–appears to unite the behavior of all

tested proteomes spanning the domains of life, which offers a

unique glimpse into the LCA’s molecular composition. This,

however, requires that the character trait–oil content–be depen-

dent on the species’ ancestral history rather than on external

factors (such as non-homogeneous changes in environmental

temperatures), i.e., species oil content must display strong

dependence on the topology of the tree of life, which is akin to

phylogenetic dependence (PD) in purely phylogenetic trees

[25,26].

Using comparative methods, we confirm that while oil escape is

dependent on the utilized ToL, that attribute is not sufficient to

reiterate oil escape, which strengthens the notion of a directed

Brownian evolution of oil content from an oily LCA. The

dependence of a character state on a particular tree may be

estimated using Pagel’s l metric [25,26], which normally ranges

from 0 (no dependence) to 1 (strong dependence). We estimated

(see method), from established methods [26], a strong bias of the

pruned ToL on species oil content (l~0:99; compared to

l~0:14+ :08 calculated from 1000 datasets with shuffled oil

contents; Figure S14 in Text S1), which indicates that oil content is

strongly dependent on a species’ evolutionary history, and less

Figure 3. Most individual proteins display ‘‘oil escape’’. Panel A
shows examples of oil escape among three homologous clusters
(seeded by SCOP protein domains listed in Section S2 in Text S1).
Similarly, a large majority of the homologous clusters (92:4% of the
5809 studied; see histogram B) undergo oil escape. Disregarding
clusters with statistically irrelevant trends (defined by p{valuew0:05 or
DrsDv0:2; C), the percent of protein clusters displaying oil escape rises to
97:8% (we also obtained similar results for homologous protein clusters
limited to each of the individual Ensemble databases [41] –bacteria,
plants, fungi,metazoa; Figure S13 in Text S1). The clusters obtained
were high in diversity, with an organism node number range of
31:8+ 0:42 and average size of *250+ 20 sequences, each sourced
from distinct proteomes.
doi:10.1371/journal.pcbi.1002839.g003

Oily LCA
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likely swayed (or biased) by ‘‘other’’ (phylogenetically independent)

forces not associated with shared history (e.g., non-homogeneous,

evolutionary pressures).

It is also important to note that PD, while useful in precluding

non-tree-based (or non systematic) biases in our trend, is not

sufficient to reproduce the oil escape trend. This is easily

evidenced by studying a ‘‘neutral drift’’ version of the original

tree, where branches are modified to ensure that all species ages

are identical (root to tip lengths are identical); while this tree does

not display oil escape (given that all species ages are identical and

not node number dependent), just like in the original ToL, high

dependence is observed (l~0:99; see Figure S14 in Text S1).

Reconstruction of the LCA state. From ancestral state estimation

methods [27] (described in Methods), the ‘‘neutral drift’’ tree

describes a random diffusion from an estimated ancestral state

(LCA’s estimated oil content a~25:9%, rate of change b~0:03%

per node, and average error �ee~n{1
P

ei~{0:9; notation

borrowed from [27]) that is very close to today’s average proteome

oil content (26.1%), while the original ‘‘speciation’’ tree describes a

steady drift from an oily LCA (a~30:1%; b~{0:18% per node

and �ee~{0:7), given the high a and substantially negative b. The

‘‘neutral tree’’ model of evolution by random diffusion is

disregarded since the expected symmetric distribution of species

about the predicted ancestral state is not observed (Figure S15 in

Text S1). This leaves us with the ‘‘oil escape’’ model proposed in

this paper (e.g., Figures 2,3), which may now be described as a

‘‘biased’’ Brownian motion in genome/proteome space at play

particularly during speciation events.

Discussion

On tree completeness and bias
We discuss the two major problems that may potentially plague

tree-related studies. First, the number of sequenced genomes

(whose species populate the tree) is minuscule compared to the

number of species observed in the biological universe (the

incompleteness problem). Second, the genomes that are sequenced

may be biased with respect to historic choice of model species, ease

of handling new species, et cetera (the selection bias problem). Here

we demonstrate how such biases do not disrupt our tree-related

inferences.

Incompleteness problem. (i) It has been shown that the maximum

likelihood comparative methodology used above is robust to

incomplete phylogenies [26], which is reflected in our finding that

the generalized least squares estimate for ancestral oil content is

consistently reiterated (averaging at *30:2%+ 0:11) even when

up to 70% of the species collection is randomly culled (Figure 4).

(ii) the ToL utilized in our studies is obtained by pruning NCBI’s

ToL [28,29] without collapsing single-children nodes [30], i.e., the

node number (or shared path) of a species (or pair of species)

within the pruned tree is equal to its corresponding value in the

exhaustive NCBI tree (Section S6.1 in Text S1). Given the

extensive species coverage in NCBI’s taxonomy records (over

230,000 species are recorded [29]), the addition of newly

sequenced species to our study will likely not modify the node

number values for the extant species (or extant values V ), and so,

adding new species proteomes to our relatively incomplete set of

species will likely have no affect on the tree topology. These points

indicate that while adding new proteomes to our analysis may

improve the statistical relevance of our findings, data incomplete-

ness is not expected to strongly disrupt our general inferences.

Selection bias problem. To ascertain the importance of selection

bias (of sequenced species) in our results, we reduced the sampling

bias by coarse graining our dataset to the genus level (averaging

the node numbers and %FILV’s within genera), which, while

losing some statistical significance, reiterates the oil escape trend

with negative %FILV vs. node number Spearman rs (rs~{0:6;

p{value~2:1|10{8; 76 data points). Our studies on randomly

culled species sets (Figure 4, expanded in Figure S16 in Text S1)

also indicate that bias due to over-sampling of related species is not

likely to drastically modify the primary observation of oil escape,

since randomized culling of species will likely reduce sampling bias

(as oversampled relatives are more likely to be culled than unique

species), which does not change our estimated ancestral oil content

until very high culling frequencies are approached. Finally, it is

important to note that the robustness of our data and analysis to

incompleteness and selection bias may be due to the highly diverse

dataset sourced from varied environments and node space (for

example, the following node numbers host diverse species: node

number 29 hosts the zebra fish, mosquito, and monkey; node

number 23 hosts the louse and the platypus).

In conclusion to the previous sections, oil escape has been

evidenced from simple regression analysis of whole proteomes

(Figure 2), protein clusters (Figure 3), and by comparative

methods. Finally, given that the biases due to incompleteness

and sampling of the sequenced species and are not expected to

negate/diminish the general trend of oil escape (see text, Figure 4,

and Figures S15 and S16 in Text S1), we expect that oil escape is

significant as a trend and merits discussion.

Other trends
It must be noted that while other phylogenetically dependent

traits may modulate oil escape, given the highly diverse nature of

the tree, the possibility of explaining the entire trend with other

niche based relationships/dependences is low. Figures S4 and S9

in Text S1 already indicate that oil escape can not be satisfactorily

described by the increase of the protein length or the addition of

loops or intrinsically disordered regions within globular proteins.

Here, we will discuss trends in amino acid and composition

previously reported in the literature to ensure that other potential

relationships are also independent of the oil escape seen here, i.e.,

oil escape is a previously unreported trend.

Figure 4. Estimated ancestral oil content vs. fraction (c) species
culled. We obtained generalized least squares estimates of ancestral
states using previously published methods [27], which indicate that the
ancestral state estimates remain at the same average value (*30:1%)
even when the species dataset is randomly culled down to 95% (100
randomly culled sets per c). Interestingly, stastical relevance is only lost
at cw0:70, where the variance in estimated oil content (shown as error
bars for 100 randomly culled sets per c) exceeds 0.25. This figure in
expanded form is available in Figure S16 in Text S1.
doi:10.1371/journal.pcbi.1002839.g004

Oily LCA
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(i) Optimal growth temperatures (OGT). A previous report has

established a strong positive correlation (r~0:93) between

proteome %IVYWREL (single-letter amino acid codes used) and

a prokaryote’s optimal growth temperature or OGT [31] (the

relationship is reiterated in Figure S5A in Text S1). At first glance,

species age (node number) and proteome %IVYWREL appears to

also correlate well (rs~{0:823, p{value~1:2|10{38; see

Figure 5A), which could have indicated an interesting relationship

between change in living conditions (temperature) and the

progression of complex lifeforms. However, the utility of %IVY-

WREL as an OGT ‘‘thermometer’’ is contingent upon equal

representation (and positive correlation) of both high and low

hydrophobic amino acid groups within IVYWREL (i.e., %ILVW

and %ERY are also expected to positively correlate with each

other; see Figure S5B–F in Text S1); given the lack of positive

correlation between %ILVW and %ERY (rs~{0:47,

p{value~9:4|10{10), the trend in Figure 5A is merely a result

of oil escape, which is also indicated by the opposing relationships

in Figure 5B,C; the trend in Figure 5A appears to be caused

primarily by oil escape.

(ii) Oil escape is not a spurious relationship. With the advent of

genome and proteome databases, a number of additional

interrelationships associated with genome/proteome composition

have been reported. Of particular interest to the focus of this paper

(oil escape) are the reported relationships between %GC content

and genome size [32], organismal complexity and genome/

proteome length [33], and %GC and hydrophobicity [34–38]. It is

important to exclude the possibility that oil escape may be a

consequence of potentially more strongly evidenced relationships.

For example, could %GC content, which is known to be a

correlate with hydrophobicity [39,40], be a stronger correlate with

node number? Or are other sets of correlations transitively

inducing the effect of oil escape?

In order to tackle these questions, we calculated all possible

relationships between species cDNA %GC (also obtained from

Ensembl genomes [41]), proteome oil content (%FILV), species

node number (N), and proteome length L (a proxy for organismal

complexity in prokaryotes [33,42–44]), which can be described as

a complete correlation network (Figure 6A) where labeled edges

(a–f) indicate Spearman correlation coefficients between proper-

ties shown as nodes. It is evident from this graph that oil escape (d)

displays a Spearman correlation that is highest in magnitude (and

consequently, also lowest in p-value). While this may hint at the

independence of oil escape from other variables, only statistical

tests [45] are able to to strike out the possibility that other variables

in Figure 6A are incapable of causing oil escape. This requires the

introduction of a statistical criterion that establishes transitivity

(and hence the possibility of causality [46]) to a triplet of variables

[45,47]. Given three variables i, j and k, and their Spearman or

Pearson correlation coefficients rij , rik, and rjk, one can show that

if r2
ijzr2

ikw1, then rjk’s sign must be commensurate to the two

other relationships, i.e., rjk’s sign must equal that of rijrik [45,47].

However, when this criterion is not met, the trend between j and k
(indicated by rjk) can not be caused by the two other correlations.

Therefore, while causality may be incapable of being proven using

correlations, the lack of causality or transitivity can be shown in

some situations. Given this criterion, we can conclude that none of

the observed adjacent relationships in Figure 6A are able to cause

oil escape d (since, from Figure 6A, both b2zf 2 and c2ze2 are

less than 1).

(iii) GC content vs node number: a possibly independent trend. So far,

we have shown that oil escape (d) is likely not caused by any

other pair of correlations in Figure 6A. However, we are still

left with the question of which of the remaining correlations

are caused by others. For example, while a strong relationship

is indicated between species %FILV and %GC (c), the

relationship is possibly not direct, which we can be shown by

a practical implementation of ‘‘proof by contradiction’’. First,

we assume that a non-spurious negative relationship exists

between oil content and %GC, i.e., the expected biases [39,40]

in the codon table (or genetic structure) [48,49] are the main

causes of the %FILV-%GC relationship. With this assumption,

we are able to quantify the expected %FILV-%GC relation-

ship by generating, for each % FILV~f [f0,1,2, . . . ,99,100g,
10,000 randomly assembled genes that each code for a

hundred amino acid peptide with oil content f . From these

pairs of gene %GC and corresponding protein %FILV, we

created a probability distribution that is represented as a

contour plot in Figure 6B (the additional ‘‘limiting’’ contour

line dividing the impossible, p~0, from possible, pw0, was

added by analyzing the extremum possibilities from the codon

table). Importantly, the relationship observed between pro-

teome %FILV and cDNA %GC (red circles in Figure 6B)

displays no correspondence with the expected probability

distribution. Also, when sampling generated sequences taken

between the observed 22v%FILVv33 range, the expected

Figure 5. A universal reduction in %IVYWREL over time is a
result of strongly reducing oil content. At first glance, it appears as
though the combined fraction of IVYWREL amino acids in a proteome
(FIVYWREL), which is a correlate of prokaryote Optimal Growth
Temperature in prokaryotes [31], is also inversely correlated with node
number or evolutionary time for both prokaryotes and eukaryotes (A;
rs~{0:82, p{value~1:2|10{38, N~152). However, this effect is
primarily caused by the hydrophobic residues of the set (IVWL; B;
rs~{0:86,p{value~1:9|10{46), while the rest of the amino acids
(ERY) show the opposite mildly increasing relationship with respect to
node number (C; rs~0:4,p{value~2:4|10{9). We can more certainly
conclude that the trend in FIVYWREL seen in (A) is only a result of ‘‘oil
escape’’ given the following information: (i) both groups (IVWL and ERY)
are required to be positively correlated in order for IVYWREL to be
predictive of OGT (Figure S5A–D in Text S1), which is not the case (for
each proteome, the Spearman correlation between FIVWL and FERY is
rs~{0:47, p{value~9:4|10{10; also see B and C), and (ii) oil content
alone is not well correlated with OGT (Figure S5E,F in Text S1), and so
the two trends of ‘‘oil escape’’ and decrease in OGT can easily be
unambiguously distinguished. The extremofile outliers in (C) are:
Pyrococcus (P) abyssi (abscissa value: 8, ordinate value: 18.4), P
kodakaraensis (8, 18.5), P furiosus (8, 18.2), P horikoshii (8, 17.6), and
Bacillus halodurans (8, 16.1).
doi:10.1371/journal.pcbi.1002839.g005

Oily LCA
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Spearman correlation between %FILV and %GC is {0:25
(p{valuev0:001), which indicates a relatively weak relation-

ship (as indicated by the broad contour distribution in

Figure 6B) that is significantly distinct from the observed

rs~{0:65 (p{valuev0:001). These incongruencies between

expected and observed relationships indicate that the observed

relationship between %FILV (or hydrophobicity [35]) and

%GC is not directly caused by the codon table, and, therefore,

the relationship between %GC and node number observed is

independent of oil escape. We leave the exploration of the

cause of trend (e) to future research.

(iv) A note on population size. Effective population size is an

important factor in population genetics [50], particularly

because deleterious mutations that result in offspring of lower

fitness are more likely to be maintained in smaller effective

population sizes [51]. It is therefore important to establish

whether population size is capable of affecting changes in

proteome and genome composition. Given the sparse statistics

on effective population sizes, we chose to use proteome length

(L) as an inverse metric for population size, which is strongly

indicated in previous reports [33,42–44]. It is important to

recognize that L can be utilized to relate population size to

%FILV or %GC only if the relationships display transitivity

[45,47] via L, which is a property that still requires verification

in future studies (in the absence of transitivity, all relationships

involving population size must be discounted). The first

correlation that we can verify is the expected positive

relationship [33,42,44] between organismal complexity (node

number N) and proteome length L (b), and, assuming

transitivity, a negative relationship between complexity (via

N) and population size (via L) [33,42–44].

We now direct our attention to the relationship between

population size and %GC. Assuming transitivity, %GC content

displays only a weak correlation with population size through L
(Figure 6A a). While the actual trend (Figure S12B in Text S1)

does not qualitatively reproduce the non-monotonic relationship

between between %GC and population size reported from

simulations [51], the trend (especially when calculated exclusively

for bacteria studies, where rs~0:47 (p{value~2|10{4) do

match the %GC versus L studies in bacteria [32]. The reason for

the incongruence with simulation [51] may be due to the possible

lack of transitivity of population size and %GC through L.

However, assuming transitivity, our data supports the notion that

genomes with high AT content display a fitness advantage

compared to genomes with low AT content; this implies a

mutational bias towards high AT content, which is universally

observed even in high-GC bacteria [52].

Finally, we will evidence that, despite the apparent correlations,

%FILV is not likely to be strongly or directly dependent on L and

therefore (assuming transitivity) population size. While %FILV

does display a negative correlation with L, there is high probability

that the result is spurious and caused by relationships b and d,

since b2zd2
w1, making b and d transitive [45,47], while b2zf 2

and d2zf 2 are both less than 1. The potentially causal

relationship is also indicated by the stronger correlation of L with

N (Figure 6A b) and a high phylogenetic dependence of L on the

tree of life and therefore node number (l~0:72, where l~1
indicates the strongest dependence and trees with shuffled leaf

attributes yield l&0:14). Therefore, our studies are unable to

discern a strong relationship between species population size and

proteome %FILV. The lack of this relationship is possibly due to

the lack of transitivity between the involved proxy variables.

Regardless, the measure of fitness of a protein is not likely to be

directly related to the thermodynamic stability of the protein, but

to the capacity to maintain a particular near-ground-state

ensemble of structures, which is not strongly dependent on only

hydrophobicity, but dependent on both hydrophobicity and the

buried polar interactions that impart greater folding specificity

[53–55], and defray, in part, the entropic cost of hydrophobic

collapse [56].

To conclude this section, we find that oil escape (%FILV vs

node number) is indeed a significant relationship that is not

expected to be caused by other variables such as %GC content,

genome length (L), population size (through L), and optimal

growth temperatures.

Oil escape appears to be asymptotically slowing down
Besides displaying a strong monotonic trend (rs~0:846), the

scatter plot that describes oil escape (Figure 2B) is also modeled

well (with correlation coefficient r&0:88 for two instances

described below) by the following asymptotic closed form:

Figure 6. (A) Oil escape is independent of other relationships.
All-versus-all Spearman correlation coefficients were calculated for all
possible pairs involving (i) species cDNA %GC, (ii) proteome %FILV, (iii)
node number N and (iv) proteome length L (individual graphs shown
in Figure S12B in Text S1). The results indicate that oil escape (d) can
not be caused by the other variables (see discussion). Relationships
between other variables as well as effects of population size on
compositions are also discussed in the text. (B) Change in %GC per
node number may be an independent trend. Finally, despite the
strong correlation between %FILV and %GC (d), the relatively strong
relationship between %GC and node number is expected to be
independent of oil escape due to the incongruence between expected
(contour plot in B) and observed correlations (observation shown as red
circles in B). P-values for each of the regressions (a) through (d) are all
statistically acceptable with values approximating 0:0032, 4|10{24,
3|10{19, 9|10{46, 6|10{18, and 2|10{9 , respectively.
doi:10.1371/journal.pcbi.1002839.g006
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%FILV~w1z w2{w1ð Þe{e
w3ð Þ ln Nð Þ ð1Þ

Here, N, w1, w2, and w3 are the node number, asymptote (in

%FILV ), ordinate-intersect, and ‘‘rate constant’’ of the trend,

respectively. Keeping all w’s variable, and fitting to the data in

Figure 2B, we obtained the asymptote w1~23:91% (with

r~0:879; Section S4 in Text S1), which, despite the coarse

grained quality of node number (and the tree of life), is remarkably

close to the expected % of codons (%FILVc) that code for oily

residues (from the universal codon table, %FILVc~23:44%).

Also, constraining w1~%FILVc still results in a similarly high

r~0:877 (Section S4 in Text S1). These findings strengthen the

idea of asymptotic decline in oil content, where the LCA’s

proteome originated as more oily than expected from sequence

entropy considerations (if one expects equal distributions of codon

usage), following which later organisms asymptotically approach

more moderate values (%FILVc~23:44). It is important to note

that, for our data, alternative genetic codon tables do not change

the value of %FILVc~23:44 [48,49], making this a universal

maximum for sequence entropy. As a footnote, while one of the six

alternative nuclear codon tables has a lower %FILVc of *21:88,

this ‘‘outlier table’’ is only utilized by a subset of the Candida genus

of yeasts that is not utilized/represented in our data. Finally, the

nearing of later proteomes’ oil content towards the ‘‘maximal

entropy’’ value (%FILVc~23:44) may have interesting implica-

tions regarding changes in the rates of molecular evolution.

Oil escape is a passive (entropically driven) drift
The list of species used in our proteome/protein-level

studies are diverse, sourced from all domains of life and

displays a large range of cellular makeup, body types,

biochemistries, evolutionary niches, etc. Given this diversity,

we conjecture that oil escape is not driven by an adaptive

pressure, as the niche diversity precludes such a broad

spectrum pressure. Additionally, given that previous trends

such as dependence of proteome composition on oil content do

not explain the oil escape trend, we provide a hypothesis based

not on extant adaptive pressures but on the features of the last

common ancestor (LCA). It is important to note that oil escape

must be a trace (fossil) drift from the LCA which would have

predominantly begun after the production of the first fit

proteome with acceptable but relatively high oil content (this

is especially the case as all observed oil contents today are

expected to be within the range of ‘‘acceptable’’ oil content,

which is relatively quite broad, *10{40%FILV ; Figure S4 in

Text S1). The subsequent reduction in oil content should be

considered to be more of a passive drift driven by the impetus

to maximize sequence information entropy through evolution-

ary time, i.e., adaptive pressures and neutral drift would not be

driving forces in oil escape, although coupling of the passive

drift with either phenomenon is possible. Still, oil escape is not

likely to be coupled to neutral drift, which can primarily

account for substitutions of nearly-neutral fitness. Alternative-

ly, oil escape may easily be coupled to mutations occurring

during speciation events, partly due to the putative increase in

substitution rates [13–15,57–64], fixation probabilities [65],

and hitchhiking [66–68] of composition-changing mutations

with adaptive mutations occurring during speciation events. It

is important to reiterate that while oil escape itself might be

coupled to adaptive processes, the impetus to shift the oil

content of a sequence is driven by the need to maximize

information entropy and not adaptive forces.

Oil escape as a molecular clock
This passive drift is slow in effect, as change in oil content (and

most other compositions, like charge content) is impeded by the

biochemical requirements of a protein (Sections S1.2 and S1.4 in

Text S1) and the proteome’s massive size (Section S1.1 in Text

S1), and therefore is not expected to be ‘‘washed away’’ by a

random mutational walk over billions of years (Section S1.1 in

Text S1). This ensures the persistence of oil escape even billions of

years after the initiation of the trend, i.e., one may consider oil

escape as a trace fossil.

These considerations indicate that the oil escape trend

summarized in Figure 2B appears to be a rare, universal ‘‘reaction

coordinate’’ for evolution, adhered to (at least roughly) by all

species tested ranging from bacteria to animals, which may serve

as a unique composition-level or ‘‘global’’ molecular clock that, if

calibrated, may augment the utility of sequence-based ‘‘local’’

molecular clocks [69]. The calibration itself would require more

species-level paleobiological first occurrence data for species whose

genomes are sequenced. Figure 2C, while rough and statistically

sub-optimal, provides a proof of concept for such a calibration

project.

It is also important to note that features such as variable

substitution rates [70,71] may pose inherent problems to the utility

of oil escape as a molecular clock. However, the finding of a

genome ‘‘core’’ that describes, even for bacteria, genes with

conservative substitution rates, lower involvement in HGTs, and

higher reliability in reconstructing robust trees [72–80] indicates

that the selection of appropriate protein collections for utility in the

global molecular clock may ameliorate a number of inherent

problems associated with a global molecular clock. Finally, oil

escape is a function of the number of substitutions associated with

node number and therefore speciation, making it distinct from

neutral molecular evolution. Whether mutations associated with

speciation events can be used as a metric for evolutionary age

remains to be seen and warrants further research.

Effects of horizontal gene transfer and recombination
The possibility of recombination and horizontal gene transfer

(HGT) [81–84] between species indicates that distinct genes may

have distinct evolutionary histories, resulting in the tree of life

being rendered, in one extreme formulation [72,73], as a network of

life [74]. Such a free exchange of genes between species would

mean a much quicker equilibration of any compositional inequities

between species and hence a drastic degradation of the oil escape

signal. However, the following points indicate that HGTs are not

significantly detrimental to the oil escape signal: (a) complex

organisms, while not completely immune to HGT, are generally

not affected by this mode of evolution [85], (b) a large percent

(*80{95%) of the genes/proteins that are crucial to the core

functioning of an organism are not replaced or affected by HGT

[72–74], while ‘‘accessory’’ or niche-associated genes partake most

in HGTs [74]. The observation of oil escape in both bacterial and

complex organism databases (hosting fungi, plants, and metazoa)

and orthologous groups spanning all domains of life (mimicking

core genes/proteins) indicates that, while horizontal gene transfer

may contribute to the noise in the oil escape signal, the complete

degradation of the signal is not evident.

While tree reconstructions based on one or few genes may be

prone to errors due to recombination and HGT events, utilization

of a high volume of independent reference points (such as a whole

proteins) results in trees that are robust to recombination and
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HGT events [78–80]. This indicates that the NCBI tree of life,

which is expertly compiled from a highly diverse set of

phylogenetic and taxonomic data, has a very low chance of being

drastically affected by HGT and recombination.

Rise of disordered proteins
Intrinsically disordered proteins (IDPs) are low-hydrophobicity

proteins that remain unfolded for most of their existence [86].

Recently, a strong connection has been recognized between the

rise of complex organisms and the increase in the incidence of

IDPs in genomes [87]. The driving forces behind both the increase

in organismal complexity and the increase in the incidence of IDPs

are still unknown, although they are believed to not be driven by

adaptive evolution [88]. It is interesting then that oil escape, when

considered as a shift in Gaussian distributions of oil content within a

proteome, is able to predict the gradual increase in IDP incidence

by the gradual decrease in oil content. Particularly, the shift of the

distribution of oil content from prokaryote to eukaryote (as

observed in Figure S11 in Text S1) appears to push the left tail/

fringe of the distribution beyond a hydrophilicity threshold that

allows for IDPs to exist [86]. Also, given that bacterial proteomes

alone also exhibit statistically-significant oil escape (Figure S1 in

Text S1), we can conclude that oil escape is not caused by the

increase in IDPs (and hence organismic complexity), while the

increase in the incidence of IDPs may be driven by oil escape. To

our knowledge, oil escape from a relatively oily ancestor is the first

non-adaptive explanation of the emergence of IDPs, which fits

well with the assertion that no adaptive processes can account for

the increase in organismal complexity [88].

Is molecular evolution irreversible?
Given the enormity of sequence space, the chances of reverting

to a distant common ancestor are abysmal, a notion that helps

paint a one-directional picture of molecular and hence organismal

evolution (see, e.g., work by Bridgham et al. [89]). To add to this

unidirectionality, Jordan et al. have provided an interesting

observation [5] indicating that there might even be a directionality

or ‘‘irreversibility’’ to the types of mutations incurred within a

protein (e.g., they reported that L?F residue substitutions occur

more often than F?L substitutions), which contradicts the

general notion of reversibility or symmetry in point mutations

(where L?P and P?L substitutions are equally probable and the

substitution matrix is symmetric). While this paper has been

challenged [7–10] primarily due to the reconstruction methods

utilized within the paper, we find from a much simpler

methodology that such a directionality may exist, albeit in not

exactly the same form as reported previously (see Figure S7 in

Text S1).

Our last common ancestor may not be the most ‘‘likely’’
one

Finally, to underline the dangers involved in extrapolating from

present day sequences to a putative common ancestor by statistical

methods, it is important to recognize that the LCA’s proteome

composition may have not been the most ‘‘likely’’ sequence from a

sequence entropy standpoint; as indicated in Figure 2B, the

ancestral sequence may have high oil content, indicating a less-

likely low sequence entropy. This raises an interesting and

unforeseen pitfall in the backwards extrapolation of the last

common ancestor’s sequence using methods involving maximum

likelihood methods: while backwards-extrapolation may hold

ground when used in less diverged groups, when extending

further back in evolutionary time, we might be presently exploring

a biophysically meaningful but historically meaningless section of

sequence space. Such a pitfall may be circumvented by applying a

‘‘field’’ (or mutational bias) to a prediction method.

Concluding remarks
Looking forward, the notion of oil escape has varied implica-

tions. Most importantly, oil escape–a universal trend relating oil

content to tree node number–evidences the emergence of all

known organisms from an oily last common ancestor, and provides

a biophysical explanation to the emergence of intrinsically

disordered proteins [86]. Additionally, the existence of at least

two seemingly independent constraints on genome/proteome com-

position (evidenced in Figure 6) indicates a robustness of evolving

genomes placed under multiple universal constraints. Finally, the

universal fossil trend in proteomes today, aside from serving as the

first potential global molecular clock, provides glimpses into the

earliest proteome, and may provide validity to the possible

irreversibility of evolution [5].

Methods

Databases used
The predicted proteome and cDNA sequences used were both

obtained from Ensemble genome databases [41] which, at the time

of procurement, hosted 272 diverse proteomes belonging to 152

distinct species sourced from all domains of life (listed in Section

S5 in Text S1). Both proteome and cDNA sequences were

obtained from all predicted genes, known or otherwise [41]. Only

amino acids that belong to the natural 20 amino acid repertoire

were used in our proteome calculations. Similarly, only nucleotides

A, T, G and C were used in our cDNA calculations.

A metric for species evolvedness
Expanding on the general idea that species that are less diverged

from the last common ancestor (e.g., bacteria) possess older

proteins/proteomes than more diverged species (e.g., fruit fly) [13–

15,20], we define a species/proteome’s modernity or newness as

the minimum number of nodes– node number–separating the species

or organism from the LCA (root) in the tree of life (ToL). The

pruned tree of life (Section S6.2 in Text S1), containing all studied

species (Section S5 in Text S1), was obtained using NCBI

Taxonomy’s Common Tree algorithm [28,29] (accessed from the

interactive tree of life [30] with the selected option of leaving

‘‘internal nodes expanded’’). This tree classification system is based

on expert but heuristic gathering of phylogenetic, taxonomic and

other biological information (excerpt from the NCBI taxonomy

website: ‘‘…[The] database does not follow a single taxonomic

treatise but rather attempts to incorporate phylogenetic and

taxonomic knowledge from a variety of sources, including the

published literature, web-based databases, and the advice of

sequence submitters and outside taxonomy experts’’; http://www.

ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.cgi?

chapter = howcite), and is therefore not biased towards specific

classification methods. For example, while distinct issues are

associated with ignoring horizontal gene transfer [74] and

recombination [81] in phylogenetic tree reconstruction, a robust

and faithful tracing of lineages is possible with the utilization of

larger sequence datasets sourced from whole proteomes [78–80].

First occurrence (FO) records
The paleobiological FO records (listed in parenthesis in Section

S5 in Text S1) are obtained from the online paleobiology database

(pbdb.org). Due to the relative sparseness of the online records, we

associated a species in our collection to its genus FO record, which
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makes this metric only a coarse grained indicator of evolutionary

age (e.g., the mosquito species Anopheles gambiae, was linked to the

genus Anopheles, which has the FO date of 23.030 Ma or million

years before current date).

Estimating the l metric phylogenetic dependence
This section summarizes the phylogenetic method introduced

by Pagel [25] and expanded by Freckleton et al. [26]. The ToL

may be described as a variance-covariance matrix V, where

elements Vi,j denote the evolutionary path lengths shared between

species i and j (so, Vi,i indicates species i’s node number in the

original tree and a constant in the ‘‘neutral drift’’ tree). Also, we

may set a (column) vector Y which contains the character traits of

the species in the tree (in our case, Yi is equal to the oil content of

species i). The extent to which a given character state Yi depends

on its position in the phylogeny may be assessed using an off

diagonal multiplier l, where the variance-covariance matrix is

transformed to V(l) by multiplying all off diagonal elements

(Vi,j=i) by l where normally 0ƒlƒ1. The estimated l will be that

which maximizes the likelihood function p(l) (obtained from

Equation 4 in Freckleton et al. [26]) for a given V (tree) and Y
(character set; for examples of such l-searches, see Figure S14 in

Text S1). A maximum likelihood estimate of l~1 would indicate

that the character state is evolving according to the Brownian

model of evolution on the phylogeny, while l~0 (where only the

diagonal elements in V remain non-zero) indicates a character

trait that is independent of the given phylogeny and shared

histories.

For convenience, Equation 4 in Freckleton et al., which is a

joint-normal probability density, is repeated here:

p(l)~
DVD{1=2

(2ps2)n=2
exp {

1

2s2
(Y{Xa)T V(l){1(Y{Xa)

� �
ð2Þ

where a is the character state at operational time 0, s2 is the

variance of the Brownian noise introduced in the character state

per time unit, and X is an n|1 ‘‘design matrix’’ of ones which

describes a Brownian mode of evolution (setting Xi~V{1
i,i or

Xi~Vi,i, which describes a simplified ‘‘biased’’ Brownian model of

evolution, does not significantly change our estimated l’s). The

maximum likelihood estimate for a is

âa~(XT V(l){1X){1(XT V(l){1Y)

and the unbiased (restricted maximum likelihood) estimate for

variance s2 is

s2~
1

(n{1)
(Y{Xâa)T V(l){1(Y{Xâa):

By maximizing Equation 2, our maximum likelihood l for a given

tree may be estimated. For both the original and ‘‘nearly neutral’’

trees we obtained l’s of 0:99 (Figure S14 in Text S1), indicating

strong phylogenetic dependence. Note that the estimated a’s are

likely not accurate, since it’s value is directly controlled by the

‘‘design matrix’’ X, whose model (Xi~1) is over-simplified to an

unbiased Brownian diffusion about the ancestral state a.

Estimating the ancestral oil content
We use a previously described generalized mean squares model

of evolution [27], which describes the character state Yi of species

i by Yi~azbTi,2zei, where a is the character state of the

ancestor (LCA) at operational time 0, b is the estimated rate of

change of the character state per operational time unit (e.g., node

number), ei is the random error, and T is an n|2 matrix whose

first column elements all equal 1 and the second column elements

depicts the species operational time/node number (i.e., Ti,1~1
and Ti,2~Vi,i~i’s operational time or node number) [27]. From

the generalized least squares method [27], we can estimate both a
and b by solving for

(b,a)~(TT V{1T){1(TT V{1Y) ð3Þ

where V is the variance-covariance matrix of the given tree (as

above; i.e., Vi,i~Ti,2). Also, the error ei for species i may then be

obtained from ei~Yi{a{bTi,2.

While the validity of the previous l-method of obtaining a was

predicated by the choice of the design matrix and the statistical

inaccuracies of the tree (caused by it’s coarse-grained nature), the

current reconstruction method does away with the Brownian

diffusion model, and so is only dependent on statistical inaccura-

cies of the tree. However, given that, it is safer to use such a
estimates as qualitative checks for hypothesis/data validity (e.g., in

Figure 4) rather than an absolute prediction of the ancestral state.

Supporting Information

Text S1 Supporting discussions, figures and data. This

document contains discussions and additional analysis that support

the findings and claims made in the main article. Additionally, the

complete list of species utilized along with the tree of life utilized

are listed at the end.

(PDF)
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