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ABSTRACT

Principles of Virus Capsid Design

Ranjan V. Mannige

The Scripps Research Institute

Doctor of Philosophy

The survival of most natural viruses is dependent upon the existence of spherical

capsids–shells of various sizes composed of protein subunits, which serve as a protec-

tive coat for the virus. Since capsids are employed in almost all aspects of the viral

life cycle, understanding both structural and dynamical features of capsids remain

imperative. In this thesis, we will employ theory into understanding such properties.

From a geometric, topological and physical perspective, we uncovered aspects of

the spherical virus capsid at various levels of structure (subunit properties [1] and

capsid scalability [2]), function (maturation [2] and rigidity [2, 3]), design (from first

principles [1–3]) and evolution [3].

The resulting theories show that virus capsids, although famously diverse, may

be unified by a mathematical framework (which culminates in a periodic table). This

framework provides an opportunity to explore a large number of capsids to benefit our

understanding of an integral player in the virus life cycle, while informing the field of

nanotechnology of general assembly design requirements. Our hope is that these the-

oretical understandings may further be employed in designing antiviral therapeutics

and completely artificial high-order molecular assemblies.



Chapter 1

Introduction

This document strives to be a narrative on the hunt for virus capsid design criteria,

and is designed to be read and understood by anyone. I hope that it will be readable in

bed without a pencil.

1.1 Viruses: a general introduction

Much before their visual discovery, spherical viruses (e.g., smallpox, yellow fever) had

already remodelled human life, a pithy case of “what you don’t know can hurt you”1.

But their discovery, the realization that such nefarious organisms barely even passed

for “living”, shook biology as a field, and since then, viruses have regularly provided

us with new surprises. For example, recently, scientists discovered that the structure

of many viruses infecting all domains of life–bacteria, archaea and eukarya–are re-

markably similar in shape (morphology) [5]. How are such diversely found viruses so

1Smallpox is believed to have redrawn history as early as 10,000 BC [4], while yellow fever resistance

was one of the deciding factors in the unfortunate slave trade trades of the later years.

1
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similar? This question, some scientists contend, lies at the center of our understand-

ing of the beginnings of life on earth [6], and will be discussed in the coming chapters.

But we are getting ahead of ourselves.

Viruses come in a variety of shapes: many regular or highly symmetric (e.g., the

spherical and rod shaped viruses), some more imaginatively shaped (like the “lemon”,

“cone”, and “hotdog” shapes [7]), whereas others are thoroughly messy and come in

a variety of irregular awtars, only one of which may be virulent (the ebola virus is a

prime example, with its characteristic “shepherd’s crook” shapes). The shapes of many

of these viruses are defined by the shape of the capsid–a protective shell that shelters

their genomes and facilitates virus transportation. These capsids are primarily com-

posed of protein subunits that come together (“assemble”) spontaneously in the correct

setting/environment, which is quite a feat!

Only a subset of virus capsids–the spherical ones–have so far afforded thorough

structural analysis; their highly symmetric nature, for various practical reasons, has

allowed for their extensive study in the last 50 years from biochemical, physical and

structural perspectives [8]2. On account of this diverse available dataset, we have

chosen to understand design criteria of spherical capsids, and will focus primarily on

them throughout this dissertation. It is, however, possible that rules gleaned from the

study of spherical capsids allow for a greater understanding of capsids of non-spherical

shapes (which will be focused on later). In the coming sections, we will review the

concepts that motivate these investigations.

2This is for two major reasons: high symmetry allows for the easy production of three-dimensional

models from cryo-EM and and X-ray crystallography methods (since various equivalent points in the

capsid can be averaged), while the ability to pack regularly into crystals further enhances the possibility

of obtaining atomic resolution x-ray crystal structures.
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1.2 Specific reasons to study the capsid

I feel that the capsid’s intricate beauty and symmetry are enough to elicit infinite

forays into the capsid world (it should be obvious by now that I like looking at them).

However, there are more practical (i.e. grantable) properties of capsids that motivate

investigations into capsid structure and function:

(1) Capsids are engineering feats. Most engineers would be very interested to know

how capsid subunits self-organize (assemble) into highly symmetric shells. This is par-

ticularly because capsids do this activity with very high fidelity (they come together to

form the correct/native capsid structure without making many mistakes, i.e. without

forming other structures such as broken capsids and what can scientifically only be

termed as “goop”). That capsids exist at the nanometer size-scale makes these self

assembling structures even more useful as wise teachers of the design of artificial

nano-assemblies.

(2) Capsids are useful scaffolds. They serve as novel platforms on which inter-

esting chemistry and immunology can be performed. Particularly, capsids are useful

for these purposes because “decorating” a capsid subunit with specific functionalities

means that that functionality increases sixty-fold in the final capsid (more on capsid

structure in Section 2.1.3).

(3) Virus life cycle is capsid centric. The capsid is often a virus’ sole armor without

which the virus dies. But beyond just protection, capsids hold useful roles in almost all

other aspects of the virus lifecycle, discussed in Figure 1.1. The more we know about

the capsid, the more viruses we can break on purpose.
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FIGURE 1.1: Virus life cycle. Generally, the virus lifecycle proceeds with the free virus

encountering a suitable host cell and then “internalising” its genome into the cell by various

means (A). Once the virus genome interacts with the cells replicative machinery, more viral

genomes (B) and capsid proteins (C,D) are produced that assemble into newly formed viruses

(E) that escape the cell (F) to invade other cells. Most of these activities involve the virus

capsid, which underlines our need to understand these little devices.

In summary, understanding how capsids work may inform us of new ways of mak-

ing, breaking, modifying and copying capsids. Specifically useful in harnessing virus

capsids are the physical properties of the subunit and the final capsid (assembly), and

the ability of the subunit to interchange between both free and associated forms. All

these things we term as the design criteria for virus capsids, and we hope to under-

stand these properties from a mathematical perspective. For that purpose, the fol-
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lowing section has been added to (hopefully) dispel the notion that all biology is not

amenable to mathematical treatment.

1.3 Math and biology can be friends!

Historically, math and physics have been progressing hand in hand quite nicely. Un-

fortunately, this can not be easily said for biological systems: although math has been

utilized as a tool in gathering data (e.g., the Fourier transformation is used in structure

determination) math’s utility in explaining and predicting biology has been limited at

best3. Still, a few biological features/systems are described by “elegant” math/theory4,

for example, Mendel’s genetic rules. Which biological systems are intractable and

which are mathematically lucid? This section provides the abstract means to look

at a biological system and answer the above question. I hope that, at the end of this

section, the reader will be amenable to the application of geometry and mathematics

in the understanding of the structure and function of virus capsids.

1.3.1 Functional energy landscape

The mathematical accessibility to some biological systems may be assessed by evoking

the functional energy landscape (Figure 1.2). It is a conceptual “genome space” that is

sampled by similar organisms competing for survival under a functional presure.

3That is ironic, since many of the major progresses in biology were made by people that would tradi-

tionally be described as physicist-types.
4I describe “elegant” as “not too complicated” or “void of knobs, switches, buttons, and tweaks”.
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FIGURE 1.2: The functional energy landscape. The nature of the functional energy

landscape’s complexity (A) and the average rate of mutation for the genome (B) affect the

chances of a genome in encountering the best design possible (the global minimum, g) from

its current situation a. Viruses are expected to have both low complexity and high mutability,

which is what, we propose, make their capsids amenable to description by mathematics.

The X-axis is a hypothetical unit that describes the genome/gene of the organism

that is involved in providing the function in consideration5. The Y-axis describes the

functional free energy. The lower this value, the more efficient the organism is at that

function, i.e., genomes will tend to collect at the landscape minima6.

1.3.2 Making the mathematical connection

It is often true that the easiest way to do something well (something “not too complex”)

is often mathematically elegant and predictable from first principles. For example, if

we fold a paper onto itself, the crease that arises is predicted to be a line7, which is also

5It is obvious that organisms of similar genomes will describe similar functional efficiencies and will

therefore probably belong to the same well in Figure 1.2.
6Incidentally, the competing models of evolution–cladogenesis by punctuated equilibrium and phyletic

gradualism–are supported by a smooth and a rough landscape respectively.
7This is a salient proof that arises from Euclidean geometry.
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the case in reality8. Although this sounds obvious, it is important to note that some

mathematical predictions, although not intuitive, are still simple and elegant (e.g.,

e = mc2). Let’s push this line of thought with the conjecture that the global minimum

to a functional energy landscape describes genomes whose products are mathematically

elegant.

The ability of an organism to arrive at the most efficient design (i.e., the global min-

imum, and hence the mathematically describable solution) will require the following

properties: (1) the organism’s genome must be mutable, without which, sampling of

the functional landscape is impossible, (2) higher mutation rates will result in higher

genome sampling thereby increasing the organisms chances in encountering the global

minimum, and (3) optimally, the landscape must have only a few deep minima, i.e. the

“system complexity” must be kept low9. These are all acceptable criteria to anyone

who uses Monte Carlo simulation methods to search for a global energy minimum.

Proposal: We propose that the chances are high that the structure and function

of virus capsids10 may be mathematically accessible. This claim emerges from the

knowledge that viruses display (1) high genome mutation rate, (2) low system com-

plexity (compared to other biological phenomena) and (3) high population doubling

rate. Aware of the virus’ relative simplicity, this thesis asks the following question

throughout the chapters: can efficient virus designs be explained by simple mathe-

matical principles? We direct this question first to the subunit shape itself (Chapter 3),

8However, the crease patterns of an unfolded origami crane is not so easily predicted as it is more

complicated (but the lines are still straight!).
9A complex system has more degrees of freedom and therefore will tend to display a larger number of

deep local minima.
10That are present on account of a rather strong evolutionary pressure based on the need to protect

and encapsulate the viral genome.
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then to the capsid assembly (Chapter 4) and finally to the natural selection of capsids

(Chapter 5).

1.4 Limitations of math

The difference must be made between features of a capsid that are general and those

that are host-specific. General properties are those that are not intimately associated

with the host. For example, while the capsid subunit performs the general mechanical

function of assembly and disassembly, certain features available on the capsid surface

may be directly involved with interacting with the host to facilitate genome entry (Fig-

ure 1.1A) or escape (Figure 1.1F). Such aspects of the capsid that interact with the host

may be mathematically intractable since the system size becomes larger (as the host

would have to be “included in the equation”). This is reflected in the diverse methods

of viral genome internalization (Figure 1.1A) that are host specific11.

It is this limitation of mathematics/theory that underlines the dire need for close

interactions between experimentalist (who can explain such things as capsid-host in-

teractions) and theorists (who can explain general design criteria and general vulner-

abilities of capsids). Both are interesting and crucial to the fight against viruses!

Before we head on to the (hopefully) fun theoretical questions, the next chapter will

discuss topics that bring everyone up to speed.

11Methods used by viruses include internalization (1) by passive means (where the virus enters the

cell through a scratch/wound, e.g, plant viruses such as SMV and TBSV), (2) via the endosomal pathway

(many animal viruses including the polio and the common cold or rheovirus), (3) by genome injection

(tailed bacterial viruses such as HK97), and (4) by a combination of methods (e.g., the herpesevirus,

which passes through the cell wall by method #2 and then finally injects its genome into the nucleus in

a manner reminiscent of method #3).



Chapter 2

Introduction II: Selected Topics

This is possibly the most boring chapter in this document. Why? Because it is the one

chapter that will be referred to repeatedly in the remainder of the book (so, its also

quite important). Topics include symmetry, the history of early virus capsid theories,

the famed triangulation number (T ), quasi-equivalence, biology’s role in nanotechnol-

ogy, et cetera. In case of extreme boredom/restlesness, swiftly proceed to Page 24.

2.1 Structural virology: then and now

In the early 1950s, very little was known regarding spherical capsid structure1. Then,

in the span of six years, our understanding of spherical virus capsid structure grew

by leaps. The two important milestones lay in realizing that (1) spherical capsids

are made up of subunits and possess icosahedral symmetry (Section 2.1.1) and (2)

1Mostly, we knew that they were made of protein.

9
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FIGURE 2.1: A range of capsids (shown roughly to scale) collected from the VIPER EMdb

website [8].

capsids are scalable (Chapter 2.1.3). These two ideas have allowed us to understand

and structurally characterize all spherical capsids that we see today (Figure 2.1).

2.1.1 Milestone I: Equivalence and symmetry

Even before protein subunits could clearly be seen within the confines of a capsid,

an interesting and important puzzle had presented itself: it was becoming clear that

the the size of any capsid was much larger than the largest protein that the enclosed

viral genome could express/produce (Remember, the genome enclosed within the capsid

must possess the blueprints for the capsid itself). How could this be explained?

Crick and Watson, after their Double Helix success, reasoned that one could form

such a capsid only if viruses have figured out a way to arrange multiple copies of

a smaller protein (a “sub”-unit) into the form of a shell2. This is where symmetry

and order comes into the picture (discussed in Section 2.2). Based on crystallographic

evidence [10], Crick and Watson had proposed that the capsid would have to assume

2They they noted that “The question we must now ask is whether the protein shell of the spherical

viruses is likewise constructed by a regular aggregation of one type of small molecule and if so, how this

is done.”(Pg. 474 in Ref. [9])
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a high order symmetry group (Section 2.2.2). In doing so, large copies of the same

subunit would possess identical or equivalent positions within the capsid (hence the

idea of equivalence between the subunits) The proposed symmetries were the ones

displayed by platonic solids (Figure 2.4) [9], of which the icosahedral symmetry is the

highest in order.

To this day, almost all spherical virus capsids possess icosahedral symmetry, which

must have been quite pleasing to Crick and Watson (and is a triumph of theory-driven

science!). However, new methods (such as negative staining EM) soon showed that

the number of subunits per capsid were in slight disagreement to the Crick-Watson

proposal. In stead of an icosahedral structure with sixty equivalent subunits, spherical

capsids, albeit icosahedrally symmetric, were found to be composed of multiples of sixty

subunits! How could capsid subunits perform such feats of scalability?3

2.1.2 Milestone II: Scalable capsids (a confluence of disciplines)

Horne and Wildy, in 1961 [11], had noticed that subunits within capsids appeared to

exist in clusters of five and six subunits4. They noticed that these structures looked

quite similar (in an abstract sense) to the structures that Buckminster Füller used to

make [11]. In those days, Buckminster was well into his hobby of putting hexagons

and pentagons (gons not mers) together to create rather robust spherical structures.

Although Horne and Wildy noticed Buckminster’s architecture [11], it was Caspar and

3In fairness, CW did not ignore the possibility of capsids with multiples of 60 subunits, they just didn’t

provide a method to understand such configurations. This is reflected in their line: “... further points

must be made to prevent misunderstanding. ... [the subunit need not be] a single protein molecule in

the chemist’s sense of a unit joined together by chemical bonds. Several different protein molecules may

aggregate to form the asymmetric unit” [9].
4Later, these clusters were called pentamers and hexamers respectively.
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Klug who actually went back to Buckminster’s personal notes, which resulted in the

seminal paper that introduced the idea of the triangulation number, quasiequivalence,

and the scalable capsid (Section 2.1.3) [12]. From that point, Structural Virology was

conceived in the form that persists even today.

A meander. Interestingly, Caspar and Klug’s method for creating scalable

capsids had been introduced a whole thirty years before by the geometer

Goldberg [13], who had shown a way to create an unlimited range of polyhedra

of any platonic symmetry with the help of two integers (h,k; described in

Section 2.1.3). If only biologists had read this gem, the observation that viruses

existed in various sizes (i.e. that they are “scalable”) would have been a lot less

mysterious. Alas, the records of the Japan-based Tôhoku Math Journal were

lost in US bombing raids of WW-II and only post 1949 volumes are available

online. Could that possibly be the reason for Goldberg’s lack of recognition by

the virus community?

2.1.3 Making “scalable” capsids

In stead of simply explaining the Caspar-Klug (and Goldberg) method for creating

capsids of various sizes, I thought of recounting Jack Johnson’s enthusiastic hands-on

“lab” section to the Structural Biology class in Scripps (which is an anecdotal version

of the method anyway). We started the class with large sheets of yellow chartpaper on

which a hexagonal lattice was printed (Figure 2.2A). We were then allowed, in groups,

to convert this boring piece of chartpaper into exciting capsid models of selected size

(Figure 2.2C; size was selected by choosing two integers “h” and “k” that were first

introduced by Goldberg, and hence will be referred to as Goldberg integers).
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FIGURE 2.2: Making capsid models of various sizes described by (h,k) pairs. The

general idea is that all capsids consist of 12 pentamers (darkened in C)and a variable num-

ber of hexamers. One may go about creating paper models of such capsids by starting out

with only a sheet of hexagons (A), where hexagons represent hexamers, and then selectively

converting specific hexamers into pentamers (B).

This transformation was done by walking along the chart paper from doomed

hexagon to doomed hexagon5 (they were doomed because they would be soon con-

verted to pentamers, shown in the final capsid models in Figure 2.2C as darkened

pentagons). These hexagons were converted into pentagons by excising 1/6th of the

selected hexagon (and its neighboring paper) and gluing the unpaired edges (Fig-

ure 2.2B). Make 12 such pentagons, join the unpaired edges, and you have a three

dimensional model of a capsid, where pentagons and hexagons represent pentamers

and hexamers respectively.

What was important about this activity is that it allows one to see that capsid size

is completely defined by the (h,k) pair. Also, we arrive at an understanding of how real

capsids can comprise exclusively from pentamers and hexamers.

5Based on our selected (h,k) pair, we would have to “walk” h hexagons in one arbitrary axis on the

paper and k hexagons in an axis that is placed at a (2π)/6 radian angle to the first axis.
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2.1.4 Quasi-equivalence in virus capsids

Although creating scalable polyhedra (by means of two integers, h and k) was not a

new idea at Caspar and Klug’s time, their idea of equivalence was original and still

is hailed as a breakthrough in structural biology. They stated that one could produce

both hexamers and pentamers from the same subunit, provided that they exist in two

distinct but similar (or quasiequivalent) environments6. When the subunit’s global

structure itself is not drastically changed, this quasi-equivalence is manifested in the

subunits ability to interact with the same partner in more than one way, making that

subunit-subunit interface a quasi-equivalent interface. One could use Figure 2.2B to

imagine how this is done in real viruses: instead of a 1/6th wedge being excised, we

would only have to jettison one protein subunit from the hexamer and let the unpaired

interfaces interact to form a pentamer (shown in Figure 5.2B).

Today, quasi-equivalence is a phenomenon that is believed to be ubiquitous to bio-

logical systems7 and is seen in processes as diverse as icosahedral virus capsid assem-

blies [14, 15] and propagation of signal cascades [16, 17].

2.1.5 Triangulation (T ) number

Although h and k are useful in understanding capsid size and arrangements of pen-

tamers and hexamers, its not always convenient to deal with two numbers as a de-

scriptor. Conveniently, Caspar and Klug presented a handy number, the triangulation

6Caspar and Klug stated that “The basic assumption is that [the] shell is held together by the same

type of bonds throughout, but that these bonds may be deformed in slightly different ways in the different

non-symmetry related environments.”(Page 10 of [12])
7As often protein molecules manifest multiple quasiequivalent configurations that interact with their

partners in multiple ways.
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number,

T = h2 + hk + k2. (2.1)

T in Equation 2.1 is useful because it easily describes the number of subunits (60T ) and

hexamers (10[T − 1]) in the capsid and the number of subunits in the asymmetric unit

(which is T itself!). Today, the triangulation number is an unalienable and expected

descriptor of any spherical capsid.

2.1.6 Mini-summary

Spherical capsids of all observed sizes may be obtained from a grouping of

twelve pentamers (symmetric clusters of five subunits) separated by a variable

number of hexamers (clusters of six subunits) [11, 12] represented in

Figure 2.2C.

Capsid size may be characterized by two integers, h and k (first discussed by

Goldberg [13] and then by Caspar and Klug in the context of capsids [12]).

A capsid of triangulation number T is comprised of 60T subunits, or 12

pentamers and 10(T − 1) hexamers, i.e., T is a quantitative metric for capsid

size (still, we now show in Chapter 5 that h and k, and not T , are are more

useful in understanding capsid classification and evolution).

2.2 Symmetry

2.2.1 Rotational symmetry

Rotational symmetry is prevalently visible in macromolecules of all types. This is espe-

cially true for viruses, where capsid subunits are known to assemble into (rotationally)
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symmetric clusters of two, three, five or six subunits (called “capsomers”) that then

come together to form the final capsid. Lets look a little more at this kind of symmetry.

FIGURE 2.3: Rotational symmetry. Sets of ‘P’s that are related by C1 through C6 sym-

metry. The central symbol denotes the point through which the symmetry axis falls perpen-

dicularly through the paper. An operation around a Cn axis is a rotation of that is made in

multiples of 360/n◦ or 2π/n radians.

Rotational symmetry (denoted as Cn, where n is an integer; see Figure 2.3) deals

with mapping one part of an object or cluster to another with the help of a “pole” or

symmetry axis. A rotational symmetry operation occurs when one, as the observer,

holds the pole with one hand and moves round the pole from one frame of view to an-

other such that, after the operation, nothing in the system appears to have changed8.

So, a symmetry operation is one where, after the operation is made, the observer is left

with a strong feeling that he/she has seen “exactly the same thing before”9.

2.2.2 Platonic/High order structures

The order of any symmetry is the distinct number of times the asymmetric unit (“P”

in Figure 2.3) is exhaustively repeated by the available symmetry operations. So, if no

other symmetry elements exist, the order of a Cn symmetric structure is n, and that of

8Now, imagine the number of C1 rotational symmetry operations that are happening as we speak in

Las Vegas! That could be your homework.
9Experts say that déjà vouz could be a result of such symmetry operations in life.
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a mirror symmetry is two10. The order of a system gets harder to predict when we go

to larger groupings of symmetry elements.

FIGURE 2.4: Platonic solids and their cubic symmetries. The word “cubic” is used because

the C3 element is the largest common symmetry element seen in all three symmetry types.

Platonic solids and icosahedral symmetry. Interesting things happen when one

groups a more complicated bunch of symmetry elements together in space, especially

if those symmetry elements intersect at a point11. For example, if done wisely, we

can increase the order of a system by cleverly grouping rotational symmetry elements

together to obtain the following “spherical” structures of high order (Figure 2.4): the

tetrahedron (possessing specifically arranged 3 and 2-fold rotational symmetry ele-

ments that define tetrahedral symmetry, T12), cube and octahedron (both possessing

identically placed 4,3, and 2-fold rotational symmetry elements that define octahedral

symmetry,O), and the icosahedron and the dodecahedron with 5,3, and 2-fold rotational

symmetry elements (icosahedral symmetry, I13).

10Order can also be thought of as the number of instances of the asymmetric unit in the symmetric

system (the number of symmetry-relatable “P”s in a cluster in Figure 2.3, for example)
11We have inadvertently described the point group that is an integral component in chemistry and

structural biology.
12Not to be mistaken for triangulation number, T ; Section 2.1.5
13It should now be obvious that an object displaying icosahedral symmetry (e.g. the dodecahedron) need

not look like an icosahedron, and an object displaying octahedral symmetry (e.g. the cube) need not look

like an octahedron. This is an important concept that lends an understanding into how virus capsids that

are predominantly icosahedral in symmetry can take on many structural forms.



Chapter 2. Selected topics 18

The T, O and I symmetries possess orders 12, 24 and 60, respectively. So, if we

tried, we could stuff 12, 24 or 60 subunits in identical (or equivalent) environments

into a shell by placing them in T, O or I symmetric arrangements, respectively. This

is a very important concept that was used by Crick and Watson [9], who reasoned that

spherical capsids may be forming from identical subunits that assemble into, in fact,

T, O or I symmetric forms (Section 2.1.1).

2.2.3 Quasi-rotational symmetry

Most six-subunit clusters (“hexamers”) in virus capsids appear to possess C6 sym-

metry even though they don’t (remember, an icosahedrally symmetric structure does

not allow C6 symmetry elements). We say that these subunits possess quasisixfold-

symmetry. This happens on account of small changes that exist between subunits

within the cluster that destroys the sixfold symmetry. Examples of this happening

given our system of “P”s is shown in Figure 2.5B-E, where the slight differences in the

color of the “P”s result in the C3, C2 and C1 clusters that appear to possess six-fold (C6).

FIGURE 2.5: Quasi-rotational symmetry. Although all these clusters appear to have six-

fold rotational symmetry (C6), only (A) does, while the rest dont on account of differences

in color. (D) and (E) are C2 transformations of each other and are not identical (or superim-

posable), which emphasizes that the structure does not even have C2 symmetry, let alone C6

symmetry.
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In capsid hexamers, the C6 symmetry is broken not by the existence of different

“colored” subunits, but often by the different angles at with which those subunits in-

teract (the hexamers need not all interact with eachother at planar angles. they have

3D shape! See Figure 4.3C). This feature of hexamers will turn out to be very impor-

tant in understanding how capsids size (Section 2.1.3) may be controlled (discussed in

Chapter 4).

2.2.4 Chiral subunit clusters can not possess mirror symmetries

Another concept that will help us in a later chapter (Chapter 3) is that virus capsids

(and other biological structures) can not possess mirror symmetries on account of their

chiral nature14.

The asymmetric unit ‘P’ in Figure 2.3 was used for a specific reason: it is chiral (it

can possesses no mirror symmetry elements), just like proteins15. In Figure 2.6, we

use a chiral (‘P’) and achiral (‘A’) asymmetric unit to emphasize that mirror symmetry

elements (dashed lines) may exist in the symmetric cluster only if the asymmetric unit

itself allows for mirror symmetries (is achiral), i.e., protein clusters can not possess

mirror symmetry elements (or mirror planes).

The exclusion of mirror symmetry from protein clusters will manifest itself in in-

teresting ways when we look at the design criteria for the subunit shape (Chapter 3).

14Being chiral means that the object and the image of that object once seen through a mirror are

distinct, which means that such objects can not host mirror symmetry elements.
15Proteins are fundamentally chiral due to their chiral polypeptide backbones.
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FIGURE 2.6: Structures may include mirror symmetries only if the asymmetric unit contains

a mirror symmetry element (dashed lines).

2.3 Introduction to nanotechnology

Science, by many, has been described as a continual search in two directions–inward

and outward. Although this sentence is ambiguous and has many meanings, all the

interpretations of this phrase, I believe, are most evident today. There are scientists

looking inwards at the mysteries of the human mind and others looking at society

as a collection of minds. There are machines currently probing both the vastness of

space and the equally “vast” regions of the sub-nuclear universe. Although much of

the research done in these bleeding-edges of science are intangible to the public, one

field–Nanotechnology–is not only tangible, but steadily gaining fame as the next big

revolution that will affect almost every aspect of personal life and industry.

Definition. Nanotechnology definitions come aplenty, and most often reflect the

definer’s school of thought. Often, when asked about nanotechnology, chemists think of

buckey balls and nanotubes, electrical engineers think of nano-lithography and silicon

chips, and biologists think of proteins. Really, it is anything to do with technology
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at the nanometer scale (one billionth of a meter)16. Controlling matter at that scale

would mean atomic control the likes of which, I feel, parallel the dreams of alchemists.

Often, nanotechnology is thought of as the control of matter from two independent

approaches: (1) top down and (2) bottom up. The former deals, essentially, with chis-

eling, etching, or lithographing bulk materials into displaying nano/micrometer-scale

features. That is how computer chips are made. The bottom-up method is more inter-

esting to me because, instead of employing big costly machines to do all the building

work (e.g. those housed in lithography clean rooms), the molecular raw materials it-

self (subunits) are allowed to toil away by assembling together into “machines” that

perform the desired functions. Just like virus capsids.

2.4 Nanotechnology, history and viruses

Modern nanotechnology’s conception emerged from a collection of papers released in

the 1960’s of which Feynman’s is most well-noted. In the 1960’s and 70’s, due to short-

comings in tools and technology, instead of gaining momentum in the scientific com-

munity, Feynman’s nanotechnology seeped into areas of art and the now famous sci-fi

literature that painted futuristic worlds of nano-bots whizzing through the mind, body,

factory, and planet, performing feats which would be looked upon simply as miracles.

Today, molecular biophysics–protein science in particular–is being recognized by

many as an excellent springboard to strengthen nanotechnology’s hopeful ascent [18].

The atom-level enzymatic techniques and mechanics that nature has been using and

16For a perspective on its tinyness, if you were a nanometer tall space traveler, a cold virus would look

like a big elephant, your football would be a hydrogen atom, and you could colonize a human eyeball with

all your friends, for it would be the size of three of your earths.
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refining for billions of years will serve as important lessons in our final aims of design-

ing and building those nano-industries that were envisaged by Feinman, Drexler and

the slew of sci-fi writers. Indeed, the Protein Data Bank (PDB) today has is a library

of more than 58,588 “nano-bots”, or proteins, that will certainly be able to teach us

volumes about practical, reproducible and functional nanotechnology.

Although most of the entries in the PDB are low order assemblies containing one

or a few subunits, Virus capsids that assemble from hundreds of subunits are among

those rare, well honed high-order systems that allow for investigation into “nano sci-

ence”. These Machines are thorough in their instructions: little subunits interact with

each other to form a final structure with high fidelity. How? What are the design

constraints? Those questions will be explored soon.



Next chapter ...

Euler is called upon

Models get attention

Subunits succumb to scrutiny

A common thread is unraveled



Chapter 3

Simplified Capsid Models Dictate

Capsid Subunit Properties

Finally! The introductions are over and we can discuss real research. This chapter will

focus on the building block of the capsid: the virus capsid subunit. What properties

must the protein have in order to perform as a good capsid subunit? What are the

subunit’s design criteria? We will use mathematical models to infer the answers to

these questions.

First, we must ask whether viruses can be described by simplified (geometric) mod-

els. We will show that virus capsids, and a lot of them at that, can be represented by

simplistic models called monohedral tilings. We then will use graph theory and topol-

ogy to arrive at simple predictions on the shape and nature of the virus capsid subunit.

Happily, the solution converged on a subunit design (or shape or tiling) that is com-

monly seen within virus capsids found in all domains of life whose hosts range from

24
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bacteria, to plants, to humans (thats one prolific subunit shape!). This suggests that

mathematical constraints may exhibit dominant roles in the natural design of biologi-

cal assemblies whose effects appear to easily transgress species boundaries.

The chapter is modified from the following journal publication: Mannige,R.V.

and Brooks III,C.L. (2008) Tilable nature of virus capsids and the role of topo-

logical constraints in natural capsid design. Physical Review E, 77(54):051902.

The paper was featured by the American Physical Society in the article “Piec-

ing a Virus Together”, Physical Review Focus, 30 May 2008, volume 21, story 18;

http://focus.aps.org/story/v21/st18

◮◮ The first half of this chapter will focus on choosing the right tools (models)

to investigate capsid design.

3.1 Part I. Modeling the spherical virus capsid

Laboratory studies of capsid structure and function are very important and can never

be replaced by theory and mind experiments. However, the value of theoretical re-

search is in supplying predictions into currently unexplored phenomena, explanations

to puzzling experimental results, and insights into experiments that provide ambigu-

ous answers. Much of these functions are performed with the help of a “model”: an

important tool in the theorists’ belt that is essentially a facsimile of the system under

scrutiny1. Models are important tools because they are expected to mimic the behav-

ior of the system (and so can be used for predictions). So, it is inevitable that a thesis

based on applying theory to capsids would require a section that asks a rather scary

1Examples of a “system” are the human brain, the stock market, a building, a capsid, etc.

http://focus.aps.org/story/v21/st18
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question: are our models really representing the real virus capsids?2 Lets further

explore the concept of the model.

3.1.1 The model

3.1.1.1 Approximations are inevitable

One easy generalization about theorists is that most of us are fond of approximations3.

Not because approximations are cool or endearing, its because approximations are

often all we have to work with! This would not be a problem in a world with unlimited

resources and perfect recording devices, where we would use quantum mechanics to

describe and explain everything4. In the real world, there is a slight problem: the

accurate treatment of any system larger than a helium atom would take too much

time to reach any solution, which means that one must be a little clever and make the

system smaller via reasonable approximations (even a high resolution X-ray crystal

structure model downloaded from the PDB, a marvel of sub-nanometer accuracy, is an

approximation that assumes that an atom is a particle instead of a more complicated

system of subatomic particles).

This requirement of approximation becomes even more evident when we consider

simulating even the smallest virus capsids. Every virus capsid must be made up of

at least 60 protein subunits5, each containing thousands of atoms themselves, making

the analysis of structural and dynamical properties of these systems in all-atom form

2This question is only scary if its answer is negative.
3And so, the notion of the approximating theorist is perpetuated, mostly.
4In this universe, we would only have to describe the system as a bunch of waves, feed it into a

computer that would then provide the answer to our question by solving the Schrödingers equation.
5This will be true for any biomolecular assembly that is icosahedrally symmetric (see Section 2.1.5

and Crick and Watson’s symmetry discussions in Ref. [9]).



Chapter 3. Tilings and subunits: looking at models. 27

computationally very difficult (as the system size is very large6). For example, state

of the art numerical simulations of a T = 1 all-atom capsid [19] took 1.1 ns per day

on 48 processors running in parallel! Although a testament to parallel processivity,

the simulation was also a testament to the current inadequacies in all-atom capsid

simulation, for virus capsids must be simulated for more than 1 ms (100, 000 times

more) to record important aspects such as assembly and structural changes.

Coarse-graining (the clustering of atoms into “pseudoatoms”) reduces the system

size drastically [20] but still falls short at the microsecond (µs) time scale (also, these

systems pose the new problem of correct parameterization of the coarse-grain force

field). These complications have motivated a plethora of theoretical attempts aimed

at understanding virus capsids using necessary and simplifying geometric assump-

tions/approximations regarding the nature of capsid assemblies [21–33]. Lets briefly

discuss these models.

3.1.1.2 A plethora of models

Previous simplistic models were used in qualitatively explaining (and not predicting)

specific virus capsid phenomena. For example, disks on a sphere were ingeniously used

in explaining the emergence of icosahedral symmetry in capsids [21, 22]7. Explana-

6In almost any simulation method, at every “timestep” the system is paused and all the forces/energies

in the system are calculated between neighboring atoms; the larger the system, the more amount of time

the CPU will take to calculate the forces/energies, and the slower the propagation time of the simulation.

So, you get a smaller “simulated time” per “simulation time” value.
7Similarly, simple van der Waals spheres [23], Stockmayer fluids [24], trapezoidal subunit building

blocks [25, 26], tiles [27–30], and simple bonding units [31–33] has enabled the application of physics and

mathematics in the exploration of various capsid phenomena such as assembly kinetics, capsid subunit

stoichiometry, quasiequivalence, and assembly nucleation events.
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tions are are interesting, but they do not explain more than why we see what we see.

Predictions that can be made are too abstract.

In this thesis, we are interested in providing not only abstract phenomenological

understandings but also accurate predictions on capsid properties.

This means that our model will have to pass the stringent test of “back-and-forth-

ability” or “transferability”, where we can make seamless jumps from the simplified

theoretical model to the high-resolution (all atom) model, and back, without losing

crucial information regarding the topics of interest (discussed below). Such a simplified

capsid model that represents a broad array of properties of many natural capsids is yet

to be described. The next subsection takes a crack at that fabled model.

A good model:

X Represents the real system well.

X Is simple enough to be handled computationally (or even better: by pen and

paper!).

3.1.1.3 Introducing the canonical capsid

Since we are interested in the manner in which the capsid is described and explained

by geometry and related math, we proceeded to model the capsid as polyhedra whose

individual faces represent one subunit each. We also took the liberty to assume that

all subunits within the capsid are similarly shaped (i.e. the polyhedron model is a

bound monohedral tiling which is formed from the tiling of one shape/face repeated

throughout the polyhedron8). This model we call the canonical capsid.

8An example of a monohedral bound tiling is the cube that is formed from one shape (a square) re-

peated six times over to form a bound surface or a polyhedron.
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⋆ Canonical capsids, if they exist, are those monohedral tilings that represent

many natural capsids well.

The reason that we selected to model the capsid as monohedral are multifaceted

(like our models!) but most importantly, it simplifies the problem9. Although the

definition of a monohedral tiling is sufficiently defined by stating that it is a polyhedron

whose faces are identical in shape, a more rigirous definition of our model is provided

in the next paragraph. Please feel free to skip it.

Denition of a monohedral tiling. A two-dimensional monohedral bound tiling

is one where identically shaped (congruent) tiles come together onto a bound (topolog-

ically spherical) surface such that no tile-tile overlaps and holes are found. In slightly

more specific terms, the term “monohedral two-dimensional tiling” refers to the classi-

cal strongly balanced tiling by a single prototile. Strongly balanced tiling means that

each tile must be a topological disk (polygon), the assembled tilings must represent

a two-manifold (tiles must not overlap), edges cannot be disconnected (i.e., it is an

edge-edge tiling), and they must be uniformly bounded and balanced (introduced by

Grünbaum and Shepherd to preclude “paradoxical” tilings in their authoritative trea-

tise on tilings and patterns [34]). Monohedrality imposes the need for just one tile

shape to exist within the tiling; however, each instance of this shape need not be re-

lated by any symmetry operation. For an understanding of edge-to-edge monohedral

tilings please refer to the review by Grünbaum and Shephard [35].

9Imagine asking the question: Imagine a virus model, a polyhedron, with each face wildly different in

shape to the other. That’s a doosy.
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⋆ Canonical capsids may be used in two contexts: they may represent either

the theoretical models or the natural capsids that are representable by these

models.

◮◮ The next section describes the materials and methods used in assaying the

extent to which capsids seen in nature may be represented by monohedral

tilings. If inclined to skip this section, please go to Section 3.1.3 for the meat of

the discussion.

3.1.2 Methods - I (Testing the existence of the canonical capsid)

Group Family name T % O % H V

1 Tombusviridae 3 0.421 0.717 0.426

Sobemoviridae 3 0.757 0.218 0.605

Birnaviridae 13 0.350 0.870 0.648

Nodaviridae 3 4.632 0.382 0.421

Tymoviridae 3 0.242 1.455 1.075

Siphoviridae 7l 3.860 2.777 1.138

Bromoviridae 3 2.253 3.916 1.175

Caliciviridae 3 7.002 2.502 1.189

2 Tetraviridae 4 12.504 0.001 1.052

Hepadnaviridae 4 5.653 6.769 0.780

Leviviridae 3 15.191 4.320 2.028

Polyomaviridae 7d 16.943 5.033 2.524

TABLE 3.1: The list of virus families from which capsids (of triangulation numbers T
and detailed in Section 3.1.2.1) were used to test for monohedral tilability (defined in Sec-

tion 3.1.1.3). The families are grouped into those containing capsids that are and are not

representable by monohedral tilings (group 1 and 2, respectively). “Monohedral tilability” is

indicated by low values for: a. the extent of average subunit-subunit overlapM percent (%

O), b. average percent holes in the capsid (% H) and, c. average subunit variance in the cap-

sid in Angstrom units (V ) within each family. The line divides the families into two groups:

(1) families whose capsids may be representable by monohedral tilings (with relatively low

% O, % H, V), and (2) capsids that cannot be represented as monohedral tilings, i.e., capsids

that possess holes, gross overlaps and subunit variability.
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3.1.2.1 Virus capsids analyzed

For our analyses (described in the next section), we used all capsids present in the

VIPERdb virus capsid repository (as of April 2007) [8] comprised of chemically iden-

tical subunits with triangulation numbers greater than one. Each of the following

capsids (described as PDBIDs) were used in the analysis (65 in number): 1aq3, 1aq4,

1auy, 1bms, 1c8n, 1cwp, 1ddl, 1dwn, 1dzs, 1e57, 1e7x, 1f15, 1f2n, 1f8v, 1frs, 1fr5, 1gav,

1gkv, 1gkw, 1ihm, 1js9, 1kuo, 1laj, 1mst, 1mva, 1mvb, 1ng0, 1nov, 1ohf, 1ohg, 1opo,

1qbe, 1qgt, 1qjz, 1sva, 1sid, 1sie, 1smv, 1u1y, 1w39, 1wce, 1x35, 1za7, 1zdh, 1zdi, 1zdj,

1zdk, 1zse, 2b2d, 2b2e, 2b2g, 2bbv, 2bu1, 2frp, 2fs3, 2fsy, 2ft1, 2gh8, 2ms2, 2tbv, 4sbv,

5msf, 6msf, 7msf, fhv. (The structure named fhv is not present in the PDB and was

deposited into the VIPERdb as a personal communication.)

Tests for monohedral tilability:

X Tilability is indicated by low subunit-subunit overlaps and few holes in the

shell.

X Monohedrality is indicated by low subunit-subunit variations in structure.

3.1.2.2 Test for capsid “tilability”

To see if a polyhedron can represent a virus capsid, we really are asking whether

the third dimension to the virus capsid shell–the thickness–can be done away with

by projecting the capsid shell onto a bound surface (e.g., the surface defined by the

average radius of the capsid). This would be hard/impossible if the capsid displays a

large number of holes and subunit-subunit overlaps (see Figure 3.1).

For that reason, we need to characterize the extent to which virus capsids display

holes and subunit-subunit overlaps. Although this may be qualitatively done visually,

http://viperdb.scripps.edu/info_page.php?VDB=1aq3
http://viperdb.scripps.edu/info_page.php?VDB=1aq4
http://viperdb.scripps.edu/info_page.php?VDB=1auy
http://viperdb.scripps.edu/info_page.php?VDB=1bms
http://viperdb.scripps.edu/info_page.php?VDB=1c8n
http://viperdb.scripps.edu/info_page.php?VDB=1cwp
http://viperdb.scripps.edu/info_page.php?VDB=1ddl
http://viperdb.scripps.edu/info_page.php?VDB=1dwn
http://viperdb.scripps.edu/info_page.php?VDB=1dzs
http://viperdb.scripps.edu/info_page.php?VDB=1e57
http://viperdb.scripps.edu/info_page.php?VDB=1e7x
http://viperdb.scripps.edu/info_page.php?VDB=1f15
http://viperdb.scripps.edu/info_page.php?VDB=1f2n
http://viperdb.scripps.edu/info_page.php?VDB=1f8v
http://viperdb.scripps.edu/info_page.php?VDB=1frs
http://viperdb.scripps.edu/info_page.php?VDB=1fr5
http://viperdb.scripps.edu/info_page.php?VDB=1gav
http://viperdb.scripps.edu/info_page.php?VDB=1gkv
http://viperdb.scripps.edu/info_page.php?VDB=1gkw
http://viperdb.scripps.edu/info_page.php?VDB=1ihm
http://viperdb.scripps.edu/info_page.php?VDB=1js9
http://viperdb.scripps.edu/info_page.php?VDB=1kuo
http://viperdb.scripps.edu/info_page.php?VDB=1laj
http://viperdb.scripps.edu/info_page.php?VDB=1mst
http://viperdb.scripps.edu/info_page.php?VDB=1mva
http://viperdb.scripps.edu/info_page.php?VDB=1mvb
http://viperdb.scripps.edu/info_page.php?VDB=1ng0
http://viperdb.scripps.edu/info_page.php?VDB=1nov
http://viperdb.scripps.edu/info_page.php?VDB=1ohf
http://viperdb.scripps.edu/info_page.php?VDB=1ohg
http://viperdb.scripps.edu/info_page.php?VDB=1opo
http://viperdb.scripps.edu/info_page.php?VDB=1qbe
http://viperdb.scripps.edu/info_page.php?VDB=1qgt
http://viperdb.scripps.edu/info_page.php?VDB=1qjz
http://viperdb.scripps.edu/info_page.php?VDB=1sva
http://viperdb.scripps.edu/info_page.php?VDB=1sid
http://viperdb.scripps.edu/info_page.php?VDB=1sie
http://viperdb.scripps.edu/info_page.php?VDB=1smv
http://viperdb.scripps.edu/info_page.php?VDB=1u1y
http://viperdb.scripps.edu/info_page.php?VDB=1w39
http://viperdb.scripps.edu/info_page.php?VDB=1wce
http://viperdb.scripps.edu/info_page.php?VDB=1x35
http://viperdb.scripps.edu/info_page.php?VDB=1za7
http://viperdb.scripps.edu/info_page.php?VDB=1zdh
http://viperdb.scripps.edu/info_page.php?VDB=1zdi
http://viperdb.scripps.edu/info_page.php?VDB=1zdj
http://viperdb.scripps.edu/info_page.php?VDB=1zdk
http://viperdb.scripps.edu/info_page.php?VDB=1zse
http://viperdb.scripps.edu/info_page.php?VDB=2b2d
http://viperdb.scripps.edu/info_page.php?VDB=2b2e
http://viperdb.scripps.edu/info_page.php?VDB=2b2g
http://viperdb.scripps.edu/info_page.php?VDB=2bbv
http://viperdb.scripps.edu/info_page.php?VDB=2bu1
http://viperdb.scripps.edu/info_page.php?VDB=2frp
http://viperdb.scripps.edu/info_page.php?VDB=2fs3
http://viperdb.scripps.edu/info_page.php?VDB=2fsy
http://viperdb.scripps.edu/info_page.php?VDB=2ft1
http://viperdb.scripps.edu/info_page.php?VDB=2gh8
http://viperdb.scripps.edu/info_page.php?VDB=2ms2
http://viperdb.scripps.edu/info_page.php?VDB=2tbv
http://viperdb.scripps.edu/info_page.php?VDB=4sbv
http://viperdb.scripps.edu/info_page.php?VDB=5msf
http://viperdb.scripps.edu/info_page.php?VDB=6msf
http://viperdb.scripps.edu/info_page.php?VDB=7msf
http://viperdb.scripps.edu/info_page.php?VDB=fhv
http://viperdb.scripps.edu/info_page.php?VDB=fhv
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FIGURE 3.1: (A) The three-dimensional all-atom model is projected onto a sphere of average

shell radius (colored to represent individual subunits) upon which a net, or dot matrix, is

cast (visible in the subunit cleared area). These dots are used in calculating the areawise

percentage of holes and overlaps in the capsid shell (This projected capsid was derived from

PDB ID 1smv). (B) The presence of either holes (right) or subunit-subunit overlaps (middle)

will result in the inability to represent these structures as well-behaved two-dimensional

tilings (left).

we chose to develop a simple metric for quantitative characterization (Figure 3.2). In

this method, we projected each protein atom present in the all-atom capsid structure

onto a sphere whose radius equals the average radius of the capsid shell (Figure 3.2B).

We then cast a net of dots–or a “dot matrix”–onto the shell (shown separately as Fig-

ure 3.2C) and calculated the percentage of dots that were present within holes (Fig-

ure 3.2D) and subunit-subunit overlaps (Figure 3.2E)10. These percentages were ob-

tained for each virus capsid listed in Section 3.1.2.1.

10Each “dot” in the matrix is ∼ 1Å
2

away from any of its closest neighbors. The volume of each subunit

was defined by the van der Waals radii of the constituent atoms along with a 1.4Å addition accounting for

water. The density of the dots is high enough for a high resolution characterization of holes and overlaps,

especially given that the smallest atom in our structures is the carbon atom with radius ∼ 1.7Å.

http://viperdb.scripps.edu/info_page.php?VDB=1smv
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FIGURE 3.2: Calculating % holes and overlaps. An atom resolution model (A; here, a

levivirus–PDBID 1qbe–was used for its high overlaps and holes) taken from the VIPERdb

[8] is projected onto a sphere of mean radius (B). A “dot matrix” is then cast (shown indepen-

dently in C) that is then used to find the extent of subunit-subunit overlaps (D; calculated

from “double occupancy” dots that are present in two subunits) and holes (E; calculated from

“zero occupancy” dots that are present in no subunits). Those capsids displaying low % holes

and overlaps are considered as potentially tilable by a single tile (i.e. monohedrally tilable).

The last test is to see whether the “tiles” or subunits are structurally invariant.

3.1.2.3 Test for capsid “monohedrality”

Assuming that the capsid is tilable, monohedral tilability is found when the shape of

each tile (or subunit) is the same (or congruent)11. To investigate tile congruence, we

look at variability within subunits in a capsid, i.e., we structurally compare subunits

within the asymmetric unit of the crystal structure to each other (since the asymmetric

unit possesses the maximally different structures within the crystal structure). Note

that our interest lies in characterizing structural changes in the entire subunit, and

11Note that the subunits don’t have to be related by symmetry to possess the same shape.

http://viperdb.scripps.edu/info_page.php?VDB=1qbe
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FIGURE 3.3: There are a large number of spherical capsids, highlighted by the dashed rect-

angles, that possess at least one of the three requirements of monohedral tilability.

not localized conformational changes which alter the inter-subunit interactions in an

otherwise structurally rigid subunit, e.g., the order-disorder transitions in the tomato

bushy stunt virus capsid (reviewed in [14]). Those structural changes may be mani-

fested in the tiling as subunit-subunit dihedral angle changes.

3.1.3 Tilability of natural spherical capsids

It is immediately evident from the histograms (Figure 3.3)12 that there is one group

of capsids (highlighted by the dashed rectangles), where at least one of the three prop-

12Note on method: In Figure 3.3, the four histograms probe the following four properties: (a) monohe-

drality (subunit variability within a capsid measured by an averaged RMSD value in Å), (b) the amount

of breaks within the capsid shell (% holes), (c) the percentage of subunit-subunit overlap within the cap-

sid, and (d) the percentage of gross subunit overlap (which was calculated by first shrinking each pruned

subunit (“Pruned”, here, means that the those amino acids within a subunit that undergo order-disorder

transitions [14], which partake in the modifying of one interface, are ignored in the assay) by a scaling fac-

tor of 0.83 and then calculating the percentage overlaps without the 1.4 Å addition to each atom radius).

The last graph was used to differentiate between those capsids that have normal overlaps–caused by

interdigitation of neighboring amino acid residues into each other at the subunit-subunit interfaces–and

gross structural (subunit-subunit) overlaps. It is clear that even in the most well behaved 2D repre-

sentable virus capsid, residue-residue interdigitations are inevitable; it is only the gross subunit-subunit

overlaps that pose a hindrance to 2D tiling representations.
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erties of monohedral tilability are possessed (in all of the metrics used, low values

indicate that the capsid possess little structural variability, negligible holes or neg-

ligible overlaps). The next question is: do some capsids possess all three properties

(making them representable by monohedral tilings)?
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FIGURE 3.4: (A,B,C) The dependence of one of three requirements for monohedral tilability

is plotted versus each of the others using family averaged values. The solid lines are added

to emphasize the trends. (D) An example of a capsid belonging to the Leviviridae family

(PDB ID: 1mst), which violates all of the requirements of monohedral tilability, as indicated

by excessive overlap of black and white subunits and large holes at five- and pseudo six-fold

symmetry axes (Subunit coloring: A,B: black; C: white).

This question is answered in Figure 3.4. The average % overlapM, % holes and

subunit structural variability were calculated for each virus family and these values

were plotted against each other, resulting in the three graphs in Figure 3.4A, B and C,

respectively. These graphs indicate that all three properties are positively correlated

with each other. Conversely, as we move away from any one of the three properties,

http://viperdb.scripps.edu/info_page.php?VDB=1mst
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the other two properties tend to weaken too, the weak exceptions being the families

tetraviridae and hepadnaviridae.

It is evident that there are capsids (belonging to families in group 2 in Tables 3.1)

that present either high structural variability, subunit-subunit overlaps (tetraviridae),

holes (hepadnaviridae), or all three characteristics (leviviridae and polyomaviridae)

and prevent them from being represented as monohedral 2D bound tilings, or canoni-

cal capsids. A levivirus has been represented in Figure 3.4D as an example of the holes

and overlaps found in group 2 capsids.

Importantly, there are a large number of capsids (capsids belonging to 8 of the 12

families studied; the first group in Tables 3.1) that possess all three qualities of mono-

hedral tilability and “reside” within all the dashed-line boxes in Figure 3.3. These

capsids, may be represented by bound monohedral tilings that we call canonical cap-

sids.

Although the bimodality of the histogram distributions in Figure 3.3 (into group 1

and group 2) is evident, there is some group 1/group2 overlap indicating that capsids

close to the border (such as capsids belonging to bromoviridae and caliciviridae families

of the group 1) may display subtle characteristics of the other class. This is expected

when attempting to classify a biological system.

The next section hopes to show that predictions made on the platonic group 1

virus capsid–discrete mathematical models or canonical capsids–can, indeed, be re-

lated back to the capsids belonging to families in group 1 of Tables 3.1.



Chapter 3. Tilings and subunits: making subunit predictions. 37

◮◮ The second half of this chapter will ask the following question: if the

capsid was made up of “Lego blocks”, what would be the optimal properties of

each block?

We will show that our predicted subunit design (Section 3.2.4) is remarkably

similar to those that we see in a diverse number of natural viruses (Section 3.4),

which has interesting implications regarding design and evolution.

3.2 Characterizing the subunit shape

Here, we will attempt to characterize the types of shapes available to the canonical

capsid subunit by sequentially answering two more tractable questions (simply be-

cause it felt like the easiest way to go about doing so). First, we will find the number of

edges (denoted in symbolic form as σ) that the canonical capsid prototile may possess13.

Then we search for specific tilings (and their allowable shapes) that are in accordance

with the canonical capsid definition and the allowable σs (read on, both activities are

surprisingly easy).

3.2.1 I. The number of sides (σ)

To answer the first part of the question (number of edges allowed), we need a subunit

model that is “malleable”, i.e., one that can readily change its edge number and shape

(remember we are asking about edge number, σ, not shape). It easily follows that

topology and graph theory–that deals with surfaces and sets of connections, and not

13“Prototiles” are tiles that are used as building blocks for tilings. If we have a monohedral tiling

(Section 3.1.1.3), then we will have only one prototile repeated many times that need to be used to create

the tiling. Still, the number of prototiles that may independently be used to assemble a canonical capsid

are not known, and we are out to seek that information.
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geometry–will be used to answer the σ question. Before all that, we need to formulate

a representation of the subunit that enables these fields to be utilized.

3.2.1.1 Representing the subunit

Figure 3.5A shows a representation of the prototile with one quasi-equivalent vertex

(circled), two straight edges, and one curved edge. The curved edge may possess any

FIGURE 3.5: An abstract representation of a canonical capsid subunit is represented here

in subunit form along with the types of subunit-subunit interactions (A) and in capsomer

(hexamer and pentamer) arrangements that are formed from type II interactions (B,C). The

final capsid is composed of 12 pentamers and 10(T − 1) hexamers that interact with each

other via type I interactions [12]. For our studies, in order to not constrain the number

of subunit vertices (and hence edges), we define the curved edge as one with a potentially

unlimited number of vertices (with a lower bound of 2).

number of 3-valent vertices (allowing this structure to have an arbitrary number of

edges/vertices). This has been done so as not to limit the number of shapes of the tile

(dictated by the number of vertices or edges). Being the center of either a pentamer or

hexamer (Figure 3.5B,C), each quasi-equivalent vertex may be either five or six valent.

The number of vertices and edges (σ) may be dependent on various properties of the

capsid such as the size or T number.

The allowance to describe capsids as monohedral tilings (or polyhedra) and our

description of a σ-unrestricted subunit allows the canonical capsid to be systematically

analyzed using simple topological tools such as the Euler’s polyhedral formula.
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3.2.1.2 Bringing out the math

Monohedral tilings (described by edges, vertices and faces) describing canonical cap-

sids must abide by Euler’s polyhedral formula14, which shows that various elements

within polyhedra may be related to each other in a predictable manner. Specifically,

the number of vertices (V ), edges (E), and faces (F ) of a such a polyhedron may be

related through the following equation:

V − E + F = 2 (3.1)

Now, we will try to obtain a relationship between the allowable number of interac-

tions/edges per tile (σ) and the variables in Equation 3.1.

Since we know that the number of faces corresponds to the number of subunits in

the canonical capsid (equaling 60T subunits per capsid with triangulation number T ;

see Section 2.1.5), we have

F = 60T (3.2)

Also, as our polyhedron defines an edge-edge tiling, each edge is shared by exactly two

faces. So, the number of edges is

E = Fσ/2 = 30Tσ (3.3)

14All canonical capsids can be thought of, graph theoretically, as triangulations of the icosahedron.

As the icosahedron is convex, it can be projected as a planar graph onto a two dimensional plane (as a

Schlegel diagram, for example [36]). This, in turn, means that the graph representation of every canon-

ical capsid is expected to be planar, whether or not the three-dimensional canonical capsid is convex.

From this it follows that the graphs describing connectivity for canonical capsids must abide by Euler’s

polyhedral formula.
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The Caspar and Klug rules of capsid assemblies (Section 2.1.5) shows that there

are twelve 5-valent vertices and 10(T − 1) 6-valent vertices [12] within the canonical

capsid (we call these the centroid vertices, which are VC in number). So, the number

of centroid vertices

VC = 10(T − 1) + 12 = 10T + 2 (3.4)

We know that each prototile must have exactly one centroid vertex15. Also, from our

earlier definition of the prototile, the rest of the (σ− 1) vertices are trivalent in nature.

Therefore, The number of trivalent vertices in the polyhedron is equal to the number

of subunits (60T ) times the number of trivalent vertices per subunit (σ − 1) divided by

the number of subunits that share each trivalent vertex (3), i.e.,

VR = 60T (σ − 1)/3 = 20T (σ − 1) (3.5)

Finally, from Equations 3.4 and 3.5, we have the total number of vertices

V = VR + VC = 2 + 20Tσ − 10T (3.6)

Substituting Equations 3.6, 3.3, and 3.2 in Equation 3.1, we get

(2 + 20Tσ − 10T ) − (30Tσ) + 60T = 2 (3.7)

Further reducing this equation, the T s cancel out and we get

15This comes from the knowledge that pentamers and hexamers are coordinated at the center.
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σ = 5 (3.8)

3.2.2 A capsid invariant

All the equations above converge to this fun little form in Equation 3.8. And when I

first had the pleasure of canceling the T s out of Equation 3.7, and it was exciting. Why?

Because a messy equation turning into a simple one is a beautiful thing. Important

for capsid design, though, is that we obtained an invariant geometric characteristic (σ)

that is independent of the T number. This indicates that a subunit may be modified

to assemble into capsids of non-native T numbers. As a corollary, it also means that

capsid subunits of one shape can potentially assemble into capsids of any size.

◮◮ If capsid size is not modulated by general subunit shape, then how is this

size modulated? That exciting question is tackled in the next chapter.

So far, we established that the subunit must be five sided16. The next part of the puzzle

is in asking what shapes (or tilings) can this five-sided subunit have?

3.2.3 II. The shapes available to a five-sided subunit

As per the definition of the canonical capsid, any prototile that can tile a bound canoni-

cal capsid should, by the rules of quasi-equivalence, also tile a two dimensional hexava-

lent lattice (see Figure 2.2 and Refs. [12] and [37]). So, our second query is simplified

to: how many five-sided prototiles may assemble into a hexavalent lattice?

Fortunately, the tiling of 2D surfaces by convex pentagons has been a subject stud-

ied at least since the early twentieth century. In the early 1980s, Grünbaum and

16We also rationalize this notion with the help of symmetry in Section 3.5.
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Shepherd enumerated a list of thirteen known convex pentagonal edge-edge tilings,

and since then, one more has been added to that list [38, 39]. We searched the re-

sulting catalogues as capitulated by Sugimoto and Ogawa [38] for convex pentagonal

prototiles that can assemble into a hexavalent lattice, and found only one tiling to fit

that criteria (known in [38] as Type 5; shown here in Figure 3.6A). Therefore, only

one type of tiling among the known ones (the Type 5 tiling) will be allowed to form a

canonical capsid of any size.

FIGURE 3.6: Pentagonal type 5 tilings. Type 5 tiles (e.g., A and B) are the only known five

sided tiles that possess six-valent vertices. The interacting edges of the prototile in both

(A) and (B) have been marked with one, two and three dashes. Such edges interact with

identically labeled edges of neighboring tiles to form interfaces within dimers, trimers and

hexamers respectively. Interestingly, a version of this tile (B) resembles a very commonly

seen subunit shape found in nature depicted as a space-filled subunit (C) and a subunit

within its capsid environment (D) (Structure used: 1vak of the Sobemoviridae family).

That topology constrains subunit form is not a new idea, and Thompson’s “Growth

and Form” stated a similar idea with respect to using shapes to create a polyhedron17.

In their famous 1956 paper, Crick and Watson cited this statement as “essentially a

17Thompson stated that “the broad, general principle that we cannot group as we please any number

and sort of polygons into a polyhedron but that the number and kind of facets in the latter are strictly

limited to a narrow range of possibilities”.

http://viperdb.scripps.edu/info_page.php?VDB=1vak
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topological one” [9]. So, then, the surprise in our work is not that the shape of the

capsid subunit appears to be constrained, but that the topological constraint appears

to be strong, and only a small number of shapes may be allowed in the canonical capsid

world.

Most importantly, the tiling described in Figure 3.6A is equivalent (combinatori-

ally) to the trapezoidal tiling seen in Figure 3.6B, which represents a 2D projection of

the trapezoid structure seen in nature (e.g., Figures 3.6C and D). Lets take a detour to

emphasize the importance of this sentence.

◮◮ Mathematically, the trapezoid is the best solution to the canonical capsid

subunit shape.

3.2.4 The ubiquitous trapezoid shape emerges

In the late 1960s, multiple labs were attempting to elucidate the first capsid structure

ever. The race for this distinction was fervent, and, at the end, the first high-resolution

capsid structure (that of the tomato bushy stunt virus) was elucidated by Steve Har-

rison’s lab [40]. Michael Rossmann’s lab came in at a close second with the southern

bean mosaic virus [41]18. Often, coming second is not that nice, but this time, the con-

solation prize was as good as winning, since Michael Rossmann made an interesting

discovery (although there were hunches before). He made the observation that the pro-

tein subunit from both viruses shared a remarkably similar structure19. Since then,

that structural motif has been seen repeatedly in plant, animal and bacterial viruses,

18Incidently, two members of my thesis committee–Art Olson and Jack Johnson–were present as post

doctoral scientists in each of those labs, and are co-authors on those historic papers!
19That eight stranded beta barrel motif, otherwise known as the jelly roll, has been associated with

Rossmann ever since.
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which makes it one prolific shape. It is also the same general shape that our theory

predicts for canonical capsids. But why do we see this shape more than any other?

3.3 Divergence or convergence?

Divergent evolution is an event where a variety of “species” evolve from a common

ancestor (i.e., they diverge from the common ancestor). During this event, various fea-

tures of the ancestor (such as a backbone for vertebrates) are retained in the current-

day species. In the species world, if one sees two species that have similar traits,

they probably had a common ancestor (this is for various reasons, but large system

size is the one in focus in Section 1.3.1). In the species world, it is unforeseeable that

two highly similar organisms could possess similar traits unless they diverged from a

common ancestor, and hence, divergent evolution is the theory that most satisfactorily

explains the existence of highly similar forms.

So, going back to these viruses, looking at the trapezoidal subunit’s ubiquitous pres-

ence20, one could be tempted to state that all of them descended from a common an-

cestor. In fact, divergent evolution is the running explanation to the trapezoidal struc-

ture, i.e., it is believed that all these capsids displaying trapezoidal subunit shapes

arose from a single proto-viral strain [42]. This notion has been especially plausible

because, so far, it would have seemed inconceivable that distinct evolutionary lineages

could ever converge on a single protein shape (that mode would be described as con-

vergent evolution).

20The trapezoidal subunit shape is seen within capsids sharing little to no similarity in amino acid

sequence, host specificity, genome type (RNA, DNA), and size (T number).
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However, here, we show that the bisected-trapezoid is the only subunit shape

(among other type 5 tilings) that is allowable within canonical capsids21. Conse-

quently, it is not improbable that distinct families evolved in parallel and encountered,

independently, the trapezoidal-shaped jelly-roll architecture, i.e., convergent evolution

is a distinct possibility, especially in systems with general but stringent constraints

(such as topological constraints). This idea is made more plausible if we recognize that

viruses display (1) high genome mutation rate (i.e. high “sampling”), (2) low system

complexity (compared to other biological phenomena) and (3) high population doubling

rate (see Section 1.3.2 for more discussion).

3.4 Canonical capsids do represent group 1 capsids

The last question that we ask is: which virus capsids possess these trapezoidal shapes?

One possibility is that these subunit designs are sprinkled randomly within the capsid

world–among both “tilable” group 1 capsids and others (Table 3.1). That would be bad,

since our predictions should be stringent only for the group 1 canonical capsids ( that

display few overlaps, holes and little subunit-subunit variability).

Fortunately, we discovered that all capsids present within group 1 families de-

scribed in Tables 3.1–the capsids representable by monohedral tilings (or canonical

capsids)–also possess trapezoidal shapes. This indicates a strong relationship between

our predictions on our mathematical models and the features seen in natural capsids,

21I.e., it appears as though the trapezoid is the only shape available to a capsid that attempts to max-

imize, via edge-edge tilings, the amount of interactions while minimizing the extent of holes and simul-

taneously reducing design complexity by being relatively structurally invariant/monohedral (all of these

features are acceptable from a free energetic point of view).
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which indicates that the canonical capsid may, in fact, be used to represent and study

capsids belonging to group 1 families of Tables 3.1. Furthermore, it is interesting to

note that capsids belonging to families such as picornaviridae and comoviridae that

possess chemically distinct subunits in the capsid asymmetric unit, but that appear

to have no gross structural overlaps and holes, also possess the familiar trapezoidal

subunit motif [43].

3.5 Rationalizing the need for a five-sided subunit

One could look at the need for a five-sided subunit intuitively from a symmetry-

oriented standpoint (please refer to Section 2.2.4 for a review on mirror symmetry and

chirality). There are two kinds of icosahedral point group symmetries–full (or achiral)

icosahedral symmetry and rotational (or chiral) icosahedral symmetry. Although both

point group symmetries have the same number of 2, 3 and 5-fold axes of rotation (see

Section 2.2.2), they differ in the number of mirror planes they possess; the full icosahe-

dral symmetry group possesses fifteen mirror planes while the rotational icosahedral

symmetry group possesses none. As chiral structures can not possess mirror symme-

tries (see Section 2.2.4), due to the chirality of biological macromolecules, it follows

that only the chiral icosahedral symmetry may exist.

Figure 3.7 represents versions of the three, four and five sided prototile in its hex-

americ form (a), which is a precursor to the canonical capsid, and the prototile itself

(b). It is immediately evident that the number of possible mirror symmetries (shown

as dashed lines) diminishes to zero at σ = 5. So, due to the molecules chirality, σ = 5
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σ = 3 σ = 4 σ = 5
A

B

FIGURE 3.7: Mirror symmetries preclude 3 and 4 sided subunits (in canonical cap-

sids). The relationship between mirror symmetry elements and the number of edges (σ) per

hexavalent tile. This image illustrates trigonal, tetragonal and pentagonal tiles in (A) the

hexavalent form and (B) as a single tile (along with the 2, 3 and 6-fold symmetry relation-

ships denoted). The dashed lines in the figure indicate possible mirror planes cutting the

plane of the paper perpendicularly. It is immediately evident that the hexameric cluster for

only σ = 5 has no possible mirror symmetries, which is crucial in the chiral-centric biological

world.

is the only viable option for virus capsid subunits; and from σ = 5, the trapezoid of the

tiling is automatically obtained.

3.6 Breaking the canonical rules

Capsids that possess subunit-subunit holes, overlaps or structural variability (i.e.,

group 2 capsids) were found to possess, largely, non-trapezoidal shaped subunits. Most

notable among these are the polyomaviridae family viruses [44, 45] that not only break

the rules of monohedral tilability, but also break the otherwise longstanding “rules” of

quasi-equivalence (although at the capsomer level, these rules are still maintained

loosely). We propose that the breaking of Caspar and Klug’s rules of quasi-equivalence
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[12] are only possible with the use of (1) chemically distinct subunits or (2) subunits

that grossly break the rules of monohedral tilability.

3.7 Future applications

Virus tiling theory, as pioneered by Twarock, has already been used to explain inter-

esting assembly-related properties of capsids that break the rules of quasi-equivalence

by displaying only pentamers and no hexamers [27–30]. Specifically, they showed that

capsids belonging to the polyomaviridae family must be represented as bound tilings

formed from two distinct subunit shapes or tiles [27, 30], i.e., capsids from this family

can not be represented by monohedral tilings, which corroborates the classification of

these capsids as “group 2” in Tables 3.1. Importantly, Twarock and colleagues showed

that one may characterize the “assembly pathways” of these tilings using mathemati-

cal methods [28, 29]. Those studies were primarily applied to capsids belonging to the

polyomaviridae family.

Our findings show that canonical capsids–monohedral bound trapezoidal tilings

that follow the rules of quasi-equivalence–may be used to represent a large number

of capsids, allowing for a physical understanding of those capsids in a manner that

builds upon the techniques introduced by Twarock and colleagues. Mathematical and

physical investigations of these canonical capsids are currently being pursued.
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3.8 Conclusion

⋆ Canonical capsids, described in Section 3.1.1.3 as monohedral tilings,

represent a large number of capsids (Section 3.1.3).

⋆ Simple math predicts that, for canonical capsids, the trapezoidal subunit

(and its variants; see Section 3.2.4 and Figure 3.6) is the only available subunit

shape. This prediction was shown to be true for all canonical capsids in nature

(Section 3.4), which indicates that independently evolving capsids may

plausibly converge on this universal subunit design (Section 3.3).

⋆ Most importantly (at least for the next chapters), the correspondence

between our models and real capsids lends credence to usefulness of the bound

monohedral tiling model of capsids (the “canonical capsid”).
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... Next chapter ...

Geometry rules

Hexamers dictate capsid size

Viruses swell

(and we get more confidence in our models)



Chapter 4

Geometric properties of the virus

capsid

Leaving the capsid subunit, our focus will now be turned to analyzing the structure

and mechanics of clusters of subunits. Virus capsids come in various sizes (Figures 2.1

and 2.2). Still, single virus strains often need to form capsids of specific sizes in or-

der to complete their virus life cycles. Despite its importance in pathogenicity, little

is known regarding the determinants of capsid size. Still less is known about ex-

actly which capsids can undergo maturation events such as buckling transitions–post-

capsid-assembly events that are crucial to some virus strains.

In this chapter, we will show that the exclusive determinant of capsid size is hex-

amer shape1. This conclusion arises from considering the dihedral angle patterns

within hexamers belonging to natural canonical capsids and geometric capsid mod-

els (deltahedra). From simple geometric models and an understanding of endo angle

1The idea is that specific hexamer shapes can only be assembled into specific capsid sizes.

51
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propagation discussed here, we then suggest that buckling transitions may be avail-

able only to capsids of certain size (specifically, T < 7 capsids are precluded from such

transformations) and that T > 7 capsids must require the help of auxiliary mecha-

nisms for proper capsid formation; These predictions, arising from simple geometry

and modeling, are backed by a body of empirical evidence, further reinforcing the ex-

tent to which the evolution of the atomistically complex virus capsid may be principled

around simple geometric design/requirements.

Specifically, this chapter asks two questions about the virus lifecycle:

X How do subunits form into capsids of specific sizes? (the size specificity

problem) and

X Which capsid can undergo these special structural transitions called

buckling transitions?

This chapter is derived from the following paper: Mannige,R.V. and Brooks

III,C.L. (2009) Geometric considerations in virus capsid size specificity, auxiliary re-

quirements, and buckling. Proceedings to the National Academy Science U.S.A.,

106(21):8531-6.

4.1 Introduction

A large number of human and crop-infecting viruses are protected by spherical capsids

(shells) of various sizes that are primarily made up of self-organizing protein subunits

[46, 47]. Caspar and Klug’s seminal paper on quasi-equivalence [12] explained how

an infinite range of capsid sizes can be “constructed” by combining 60T subunits or

twelve pentamers (five-valent subunit clusters) and a variable number of hexamers
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(10 × (T − 1)) into a closed spherical shell (T = 1, 3, 4, 7... and is the triangulation

number [12] described in Section 2.1.3).

From the range of possible sizes, generally, subunits from specific viral strains as-

semble into capsids of specific sizes; the inability to form those native sizes is believed

to result in the loss of infectivity. For example, the sobemovirus and birnavirus cap-

sids [48, 49] shown in Figure 4.1A are known to be pathogenic primarily in their na-

tive T = 3 and T = 13 capsid forms (or sizes), respectively. Despite its importance in

pathogenicity, our picture of capsid size-specificity is incomplete. Here, we are inter-

ested in the structural features (constraints), if any exist, that differentiate between

capsids of different sizes (capsid design criteria). An appreciation of these concepts is

pressing from a nanotechnological perspective (for the rational design of artificial scal-

able assemblies that build on current practices, such as in the use of protein fusion and

symmetry properties by Padilla et al. [50]) and a therapeutic perspective (to impede

the formation of infective native capsids).

The size-specificity puzzle gets more interesting given the theoretical evidence (de-

rived in Chapter 3) that a single subunit shape (the trapezoidal prototile) possesses

the ability to tile all of the allowed canonical capsid sizes (T = 1, 3, 4, 7...) [1], which is

backed by evidence of a ubiquitous trapezoidal subunit shape seen in nature (discussed

in [42]). In these situations, the differences between capsids of different sizes will be

seen within the capsid’s subunit-subunit dihedral angles2, i.e., size-specificity within

canonical capsids (defined in Section 3.1.1.3) may be manifested not in the subunit

2For example, the average dihedral angle value per capsid will tend towards 180◦ as we proceed to

larger and larger capsid sizes.
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A. All-atom capsid B. Geometric capsid

T=3

T=13

FIGURE 4.1: Two capsid sizes. In (A), two natural canonical capsids (the T = 3 sobe-

movirus and T = 13 birnavirus capsids with PDBIDs 1smv and 1wce respectively) are shown

to emphasize that spherical capsids come in many sizes that are composed of 12 pentamers

(dark grey) and 10 × (T − 1) hexamers [12]. We use geometric models (B) as platonic capsid

representations for the characterization of structure and function. In each capsid, a single

hexamer (colored red) along with two subunits (“1” and “2”) are marked to emphasize the

structural correspondence between all-atom and geometric capsids.

shape itself but in the angles at which the generally rigid subunits interact within the

capsid.

In the following sections, we attempt to show that the exclusive determinant of

canonical capsid size is hexamer shape as defined by the internal subunit-subunit di-

hedral angles within the hexamers. We then use knowledge of “endo angle constraints”

(defined here) to predict that only capsids of specific sizes (T ≥ 7) possess the poten-

tial to undergo true buckling transitions. Interesting inferences on the requirement

http://viperdb.scripps.edu/info_page.php?VDB=1smv
http://viperdb.scripps.edu/info_page.php?VDB=1wce
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of auxiliary proteins in large capsids are also discussed in the context of hexameric

flexibility.

Next, we look at subunit-subunit dihedral angles in hexamers.

4.2 Hexamer shapes encode for capsid size

To understand capsid size specificity, we chose to focus on hexamers and the effect

of neighboring pentamers on their shapes for various reasons: From a geometric per-

spective, capsids of different sizes (but formed from similarly shaped subunits) must

possess identical pentamers3, which has also been shown to be true for both cryo-EM

[51] and x-ray structures4. Secondly, hexamer structure in some capsids is known to

be influenced by the presence of neighboring pentamers [51, 52], indicating that the

arrangement of neighboring pentamers may be important for defining hexamer shape.

Also, if the subunits in the hexamer are expected to be the same, then the hexamer’s

six dihedral angles5 must define hexamer shape.

Comparing dihedral angles between subunits involves defining subunit planes (and

then comparing the angle between adjacent planes), which is an imprecise endeavor

as the subunit is a three dimensional molecule with a rough and complicated atomic

3Discussed in Section A.1.
4Crystallographically, this is evident when comparing pentamers appearing in capsids of two sizes

(T > 1 and T = 1) that are formed from chemically identical subunits, e.g., in the birnavirus (PDBIDs:

T = 13: 1wce; T = 1: 1wcd), alfalfa mosaic virus (PDBIDs: T = 3: 1js9; T = 1: 1yc6), and sesbania

mosaic virus (PDBIDs: T = 3: 1smv, T = 1: 1x36).
5 What is a dihedral angle? It is the angle between any two planes. Examples are given below.

If you have a sheet of paper and draw a line on it, the dihedral angle between the two

halves is 180◦ or planar. Fold the paper across that line such that the two halves are

at right angles to each other and we have a dihedral angle of 90◦ at that line. Fold

the paper onto itself, and the angle is 0◦.

http://viperdb.scripps.edu/info_page.php?VDB=1wce
http://viperdb.scripps.edu/info_page.php?VDB=1wcd
http://viperdb.scripps.edu/info_page.php?VDB=1js9
http://viperdb.scripps.edu/info_page.php?VDB=1yc6
http://viperdb.scripps.edu/info_page.php?VDB=1smv
http://viperdb.scripps.edu/info_page.php?VDB=1x36
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surface6. Instead, we looked at how similar the pentameric (defined “endo”) dihedral

angle is to each of the hexameric angles within a capsid. For any hexamer within

capsids possessing highly uniform subunit structures (i.e., strictly canonical capsids

[1]), this can be done simply by structurally aligning a pair of adjacent pentameric

subunits to each of the six pairs of adjacent hexameric subunits (more in Materials

and Methods). Each pair-pair structural alignment results in one root mean square

deviation (RMSD) value, which is low if the angles associated with the pairs are similar

(and 0 if the pairs possess identical angles).

In each capsid studied, for every unique hexamer in a distinct environment (T = 13

capsids have two unique hexamer environments, while T = 3, 4 and 7 possess just

one), we obtained six RMSD values (numbered 1 through 6 in counter clockwise fash-

ion starting with an angle closest to the pentamer) represented as lines (one for each

unique hexamer) and grouped by T -number in Figure 4.2A (shown separately for each

capsid in Figure A.2). Excepting the T = 13 capsid, which possesses two unique hex-

amers (labeled as “hexamer 1” and “hexamer 2”), each line in Figure 4.2A is obtained

from distinct natural canonical capsid structures (described in Materials and Meth-

ods). The qualitative groupings of the lines in this figure suggest that hexamers exist

in variously puckered hexamer shapes that are size or T -specific. For example, all

hexamers from T = 3 and T = 4 canonical capsids appear to display characteristic

“ruffled” and “wing” shapes, respectively, displayed geometrically in Figure 4.3C (that

correspond to previously described trimer of dimers and dimer of trimers [53, 54], re-

6Also, many capsid subunits “display” protruding domains on the capsid’s surface (e.g., the P domain

of the Tomato Bushy Stunt Virus, PDBID: 2tbv), making the choice for a suitable generalized plane even

harder.

http://viperdb.scripps.edu/info_page.php?VDB=2tbv
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FIGURE 4.2: Hexamer shape is specific to capsid size. (A) shows the the extent to which

hexameric dihedral angles (numbered 1 through 6 on the x-axis in all graphs) found within

natural capsids resemble the endo angle found within the pentamer (angle similarity is pro-

portional to the RMSD). It is evident that hexameric angles adjacent to pentamers (with

numbers circled on the x-axis) are consistently endo-like, which gives rise to the concept of

endo angle propagation (read text). Furthermore, ab initio (geometric) models were used to

obtain accurate hexameric dihedral angle values (B), which reflect the patterns seen in (A).

Both sources (A,B) indicate that the shapes available to the hexamer is strongly constrained

by the size of the capsid. An expanded version of (A) is available in Figure A.2

spectively). Also, all hexameric angles (circled in the x-axis in Figure 4.2A) adjacent to

pentameric “endo” angles are also endo like in nature, as indicated by the low RMSD

values, which is an important outcome of the pentameric endo angle constraint on

hexamer shape discussed further on.

X Hexamer shape is capsid size specific and is primarily constrained by the

neighboring arrangements of pentamers.
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Figure 4.2A, however useful, cannot be used in making quantitative observations

on hexameric geometries that would be required from a capsid design/nanotechnology

perspective (since an RMSD does not provide us with angle values, it is only an an-

gle similarity metric). For that, computational models of canonical capsids (deltahe-

dra, described in Materials and Methods) were built for T numbers 1, 3, 4, 7 and 137.

The dihedral angles present within model hexamers are plotted in Figure 4.2B, also

arranged as per capsid size. It is clear that these dihedral angle patterns closely re-

semble those seen in nature for each available capsid size (Figure 4.2A). This on its

own is interesting because these models were obtained from independent ab initio

methods (obtained from non-dimensional deltahedron graphs embedded in three di-

mensional space with no application of icosahedral symmetry) but still display natural

canonical capsid properties (hexamer shape), reinforcing the natural capsids’ geomet-

ric/mathematical nature. More relevant, however, is that geometric constructions in-

dependently reiterate hexamer size-specificity. Additionally, even in the models, it is

evident (partly because of the geometric construction itself) that those hexameric an-

gles shared with pentamers are pentameric (or endo like) at ∼ 138.19◦, independent of

size (or T ). Section A.1 shows that this is a mathematical result of quasiequivalence

and the monohedral tilability of the capsid.

X Hexamer shapes described in Figure 4.2B may be used in creating

size-specific artificial assemblies.

7Note that deltahedra have been previously discussed with respect to spherical capsids, particularly

Fig. 8 in [12] and Fig. 3 in [52]; however, in both studies, the deltahedra were conceptual tools, and

could not be readily related to natural capsid arrangements; only from recent observations of monohedral

tilability [1] discussed in Chapter 3 can we now represent a large number of natural capsids by deltahedra

in a structurally meaningful manner.
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4.2.1 Endo angle constraints

From our analysis of both the all-atom capsid structures and geometric models, we can

surmise that hexameric dihedral angles are affected by the presence of adjacent pen-

tamers. Figure 4.3A represents a canonical capsid subunit (described in [1]) with its in-

teraction types that give rise to all possible capsid sizes, and B represents a pentamer-

hexamer cluster present in T > 1 capsids. It is evident, if all subunits within a capsid

retain similar shape and size, that the angle within the pentamer will be propagated

into the adjacent hexamer (indicated by the arrow). This we call the endo angle con-

straint. From this it becomes evident that hexameric shapes (Figure 4.3C) must be

specific to capsid size. This is a natural progression of the endo angle constraint on

account of shifting positions (and numbers) of neighboring pentamers around the hex-

amer (an effect that is corroborated by discussions on empirical [51] and theoretical

[52] bacteriophage models8).

We expect that the dihedral angles within the remainder of the hexamer (the “un-

constrained” angles we call exo or “x”) must also be indirectly constrained by endo

angle propagation, as they must accommodate values suitable to the distribution of

the preset endo angles, i.e., the number of endo angles present within a hexamer will

be important in determining the possible shapes available to the hexamer.

8 [51] dealt with pentamer polymorphism within a single capsid, and Moody [52] reasoned that the

hexamer shape was modified by the distortion of pentamers due the projection of the pentamer onto the

icosahedral insphere (see “hexamer rectification” in [52]). Although very creative and useful qualitative

rationalizations of some cryo-EM structures, these rationalizations are clearly not applicable to canonical

capsids with uniform subunit shapes.
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X Pentamers appear to impose endo angle values onto adjacent hexameric

dihedral angles.

X This imposition dictates that hexamer shape must be capsid size (or h,k)

specific.

4.2.2 Considering larger capsid sizes

As we approach larger capsid sizes (T > 7), the number of hexamers in unique envi-

ronments will increase. We propose that capsids of all sizes may be created from a

small repertoire of distinct hexamer shapes. Early work showed that capsids may be

separated into three classes distinguishable by distinct size-specific capsid morpholo-

gies (obtained from symmetry considerations in [11], paper models in [12], endo angles

in Section 5.3.2 and Ref. [1]), e.g., capsids with k = 0 (where T = 1, 4, 9, 16, 25...) belong

to class 1 in Figure 5.3 (and class A in Fig. 10 in Ref. [11]) are most icosahedral in

morphology.

As a harbinger of the chapter to come, we will expand on this class system, and

hypothesize that capsids belonging to the same class will possess conserved/common

hexamer shapes, and so, the rational modification of a capsid’s size within a class will

be easier than inter-class size conversions. This explains why T = 4 capsid subunits,

that form “wing” shaped hexamers (Figure 4.3C), once mutated, are able to assemble

exclusively into other sizes within the same morphological class (T = 1, 4, 9, 16, 25, and

36) [55]. These interchangeability rules explain how capsids of various sizes may have

been sampled from a relatively simple set of capsomer building blocks, leading to a

range of capsids seen today.
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4.2.3 T>1 to T=1 capsid transformations

We find that capsid models of any size possess pentameric angles equaling ∼ 138.19◦,

the same as internal angles within an icosahedron and that seen within T = 1 pen-

tamers. Considering that no explicit icosahedral symmetry was enforced onto the

building of the models, this is not an expected result, as a pentamer (collection of five

valent plates) possesses a configurational degree of freedom (and could therefore pos-

sess non-similar angles). This indicates that, even at the most basic geometric level,

subunits fated to form T > 1 capsids may possess enough information to assemble into

T = 1 capsids, especially if subunit-subunit angles specific to hexamers are prevented

from forming, an effect visible in both canonical [49, 56] and non-canonical natural

capsids [57, 58]. Consequently, all subunits evolved to form T > 1 capsids may possess

the potential for T > 1 −→ T = 1 transformations in specific conditions.

X All capsid subunits may possess the ability to form T = 1 capsids.

4.2.4 Implications for anti-capsid therapies

Our results suggest that rational control of hexamer shape may allow for the redirec-

tion of native capsid subunits into non-native/non-infectious forms, allowing for the

development of non-native but industrially useful assemblies and, more importantly,

allowing for rational/combinatorially directed anti-viral drug design. An example of

such hexamer shape modification is by the binding of organic molecules to specific

intra-hexamer subunit-subunit interfaces (e.g., the molecule HAP1 that modifies T = 4

capsid assembly in the Hepatitis B virus [59]). The current use of organic molecules in
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controlling capsid disassembly (discussed in [42]) and assembly (e.g., [59–62]) provides

a possible platform to commence the rational search for such molecules that modulate

capsid size via the modification of hexamer shape.

4.3 Endo angles and buckling transitions

Some capsids undergo buckling transitions, where the capsid, once assembled, under-

goes a change in morphology from being more spherical to a more faceted (or more

“icosahedron-like”) form [63, 64]. For capsids that undergo such transitions (distin-

guished from capsid “swelling events” below), this change in morphology is crucial

to the continuation of the virus life cycle. In what follows, we attempt to validate

a hypothesis that emerges from our understanding on endo angle constraints. Let

us consider hexamers extracted from deltahedra for a range of sizes or T numbers

(Figure 4.4A). Here, the solid lines represent rigid edges, equilateral triangles repre-

sent flat subunits, and P marks the dihedral angle that is shared with a pentamer

and hence endo constrained at ∼ 318.19◦ (the constraint is depicted as dashed lines

that prevent specific angles from changing). We hypothesize that buckling transitions

should be possible only in T ≥ 7 capsids, where the total number of endo angle con-

straints per hexamer (given by 6/[T − 1], which is easily derivable9) is one or lower.

From a brief analysis of the graphs in Figure 4.4A, it is evident that if the endo an-

gle constraints are “turned on”, i.e., if the dashed lines are treated as solid (locking

9From the various definitions of the canonical capsid of triangulation number T [1, 12], we have the

number of hexamers per capsid equaling 10(T − 1) and the number of pentamers per capsid equaling

12. Since we have 5 endo angles per pentamer, the average number of endo angles per hexamer that are

imposed directly by pentamers must equal 12 × 5/[10(T − 1)] or 6/(T − 1).
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certain dihedral angles at ∼ 138.19◦), only certain hexamers (possessing one or fewer

endo angle constraints) will be allowed to sample at least two easily obtainable but

distinct configurations. Specifically, those “flexible” hexamers must belong to T ≥ 7

capsids, where the average number of endo angles per hexamer (6/[T − 1]), is less than

or equal to 1. In this way, although endo angles do not directly constrain all angles

in the hexamer (via the arrow depiction in Figure 4.3A), in some sizes (T = 3, 4), all

hexameric dihedral angles are effectively constrained due to specifically arranged endo

angle constraints.

X All capsids may not be able to undergo buckling transitions.

To test this idea, we looked for the availability of accessible conformations to a cap-

sid by physically perturbing (“squeezing and stretching”) dihedral angles within capsid

models (deltahedra) of varying sizes (T numbers). The main assumption is that if the

simplistic model is not able to sample alternative configurations, then the all-atom

capsid that is constrained by simple geometry certainly will not. Here, the trimers are

treated as rigid units (forming equilateral triangles, faces of the deltahedron). This is

a reasonable assumption if subunit shapes are not greatly changed upon capsid buck-

ling (as is noticed in the bacteriophage HK97, where the morphology change has little

effect on the general shape of the subunit [64], while greatly modifying the hexamer

pucker state [63]).

For each dihedral angle, we applied stretching and squeezing forces (that try to

expand and contract the dihedral angles, discussed in the Materials and Methods sec-

tion). The forces were incremented from 0 in small steps (0.00125ǫ units, with cu-
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FIGURE 4.3: Simple geometry describes hexamer shape. A canonical capsid subunit

is shown in (A) with its bonding rules and one local environment. The pentamer-hexamer

interface shown in blue in (B) possesses a curious effect where the hexameric angle adjacent

to a pentamer must also be endo like (or pentameric) in nature. This effect–the endo angle

constraint (shown as an arrow from the pentameric angle to that in the hexamer)–can be

seen in natural canonical capsids as evidenced by the dihedral angle profiles in Figure 4.2A.

The result, as shown in (C), is that hexamers belonging to different capsid sizes (T numbers)

possess varying number of endo angles (red dashes) and may possesses different hexamer

shapes.

mulative forces ranging from 0 to ǫ/8, where ǫ is the bonded force constant of each

bond/edge of the deltahedron), while minimizing the structure at every step. If there

is no physical constraint geometrically placed upon the specific hexameric angle (on

account of the architecture of the model), then the forces will cause a change in the

structure and the recorded energy will remain at zero. If constrained, the capsid will

be relatively unyielding to the forces, and the energy will increase harmonically with

each step only to fall back into its original state after forces are lifted. Dihedral angle
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tests showed that all hexameric dihedral angles within the T = 1, 3 and 4 capsids are

rigid/constrained within our force regime.

However, analysis of the T = 7 capsid model–where the number of endo angles

per hexamer is 1 (i.e., where 6/[T − 1] ≤ 1)–shows that some hexameric angles are

able to sample an alternative conformation (indicated by the availability of multiple

local minima and hexamer configurations in Figures 4.4A and B respectively). The

change is not instantaneous upon application of infinitesimal force, but is dependent

on overcoming a small energy barrier (akin to going through a transition state). Our

results indicate that buckling transitions that require the sampling of two distinct

conformations may be available only to T ≥ 7 capsids (as evidenced in our T = 7, 13

models). However, we stress that not all large capsids may possess this ability even at

a simple geometric level. For example, the T = 9 capsid/deltahedron, which is purely

icosahedral in shape (with 20 triangulated facets of 27 subunits), may not possess the

ability to easily sample multiple configurations on account of its idealized icosahedral

shape (which is purely convex and hence geometrically highly stable).

It is noteworthy that buckling of capsids represented by continuum elastic shells

have been performed before, where interesting relationships between radius, capsid

size, and sphericity were established [65, 66]; however, in these studies, the predic-

tions made have yet to be applied to capsids of specific T -numbers. The continuum

models neglect molecular/geometric features of the capsid (such as hexamer shape),

and are therefore not analogous to our investigations, which are centered around

subunit-shape-resolved models. It will be interesting to see if inferences/predictions

from continuum and geometric methods converge.
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FIGURE 4.4: Only T ≥ 7 capsid models appear to “buckle”. Hexamer graphs taken from

various capsid sizes (A; where subunits are represented as solid-edged triangles) show that,

geometrically, only hexamers from T = 7 canonical capsids (or larger) may undergo changes

in shape while maintaining monohedrality (defined in Section 3.1.1.3 as maintaining subunit

shape); this occurs in light of the endo angle constraints (shown effectively as dashed edges)

imposed by pentamers (marked by P). Forces applied onto individual dihedral angles within

capsid models (A; see Section 4.5.4)) indicate that T < 7 capsid models are geometrically

rigid upon application of small forces on dihedral angles (indicated by parabolic force-energy

profiles and singular minima, shown in Figure A.3), while the geometry of T ≥ 7 capsids

appear to allow for specific dihedral angles to sample multiple values (shown here for T =
7, 13). The result, especially for T = 7 capsid models, is that hexamers within the capsid are

able to sample two distinct configurations (blue and red hexamers), a result that parallels

buckling transitions in theoretical [67] and experimental studies of the T = 7 capsid [63, 64].

4.3.1 Buckling transitions versus other maturation events

We distinguish between what we call “true” buckling transitions and other matura-

tion events such as capsid swelling (or its inverse: shrinking). Buckling transitions

are those transitions that allow a shell to sample two morphologies–one being more

“spherical” and the other being more “faceted” or icosahedral–without undergoing ma-

jor changes in subunit-subunit bondedness and subunit shape [64]. This excludes the

other kind of maturation events–swelling [68–70]–that is theoretically available to
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any capsid regardless of size. Also, those maturation events requiring gross change in

subunit shape (e.g., as seen in Flaviruses [71]) are not considered here.

Swelling is primarily caused by weakening of interfaces (via pH modulation, ion

depletion, electrostatic screening, etc.), which causes a radial capsid swell (its con-

verse, “shrinkage”, happens when subunit-subunit interactions are strengthened).

These events often accompany the introduction/removal of holes between subunits

(commonly found at within trimers), which can not be modeled by simple monohe-

dral tilings/deltahedra (as holes must be considered as additional tiles). Examples of

swelling and shrinkage are the T = 3 and unnatural T = 1 plant viruses such as

sesbania mosaic virus (that undergo swelling) [68, 72] and T = 4 semliki forest virus

and T = 16 herpes virus (that undergo shrinkage from a swollen precursor to a finally

more icosahedral looking capsid) [69, 70], all of which display holes in their expanded

or swollen forms. These kinds of swelling/shrinking transformations comprise radial

motions that have been given previous theoretical consideration [22, 73] and were not

considered here.

4.3.2 The need for auxiliary proteins

Here, we established that the pentamer imposes its endo dihedral angle properties

onto adjacent hexameric dihedral angles (Figure 4.3B), thereby constraining shapes

available to adjacent hexamers. This, along with well recorded quasi-equivalent mech-

anisms (“switches”) such as order-disorder transitions (reviewed in [14, 15]) are ade-

quate in ensuring the existence of both pentamers and hexamers adjacent to pen-

tamers in small (T ≤ 7) capsids.
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However, T > 7 capsids possess more than one hexamer species, where the sec-

ondary hexamer type is no longer in contact with any pentamer. Such hexamers

may not be directly influenced by the geometric endo angle constraints (and adjacent

quasiequivalent mechanisms), and therefore, we argue, may need other (auxiliary)

constraints to secure the shape of the isolated hexamer. It is interesting that, so far,

all T > 7 spherical capsids have been experimentally found to require auxiliary pro-

teins to form native structures (noted in [14]). It is also interesting that, during model

construction, all T ≤ 7 capsids did not require any additional constraints to ensure uni-

form hexamer shapes, while the second hexamer that is isolated from the pentamers

in the T = 13 model was able to sample at least two distinct (and energetically viable)

shapes within the capsid, resulting in a non symmetric and subunit-subunit bond-wise

“complicated” capsid structure (“hexamer 2” of the T = 13 capsid model in Figure 4.2B

is an averaged version of positionally equivalent but architecturally varying hexam-

ers). Based on experimental and geometric studies, we suggest that all T > 7 capsids

require auxiliary mechanisms (by means of proteins interaction, etc.) to maintain the

shape of secondary hexamers.

Stating that T > 7 capsids must need auxiliary proteins does not preclude the

T ≤ 7 capsids from displaying auxiliary proteins–for any capsid size, auxiliary proteins

may serve as an excellent mechanism for viral lifecycle control. Our statement only

implies that T > 7 capsids may be theoretically/geometrically excluded from forming

all required capsomer shapes (to form the final capsid) without auxiliary help in the

form of proteins or additional (currently unelucidated) mechanisms to assist in the

formation of the secondary hexamers.
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X Bigger (T > 7) capsids need helpers to form correctly. Could these helpers be

used as antiviral targets?

4.3.3 Auxiliary proteins vs. buckling availability

Some T > 7 capsids are known to retain the auxiliary proteins within the final capsid

(e.g., the T = 13 birnavirus [49] and reovirus [74, 75]). This adds an interesting im-

position onto T > 7 capsids; for even if they theoretically could buckle, their present

morphology may be “locked in” due to contact with the auxiliary proteins. If this is

true, the presence of such auxiliary proteins may impede buckling of T > 7 capsids,

i.e., buckling transitions may be practically possible only for T = 7 capsids. Currently,

empirical data shows direct evidence of buckling transitions exclusively in T = 7 cap-

sids [63, 64, 76], supporting this hypothesis.

4.4 Concluding Remarks

How do capsids form different sizes? The theory of quasi-equivalence posits that the co-

existence of the pentamer and hexamer allows for capsids of various sizes to exist [12].

Here, we showed, from empirical evidence and ab initio models, that shapes or puckers

of the hexamers are strongly indicative of size within all available canonical capsids

(opening the possibility of rational design of artificial nanoarrays and hexamer-shape-

modifying drugs). After relating canonical capsids to geometrical entities–deltahedra–

we were able to use such models and geometric concepts (e.g., endo angle constraints)

to arrive at interesting (and empirically supported) general insights and predictions

regarding modulation of capsid assembly (auxiliary protein requirements) and post-
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assembly capsid transformations (availability of buckling transitions). Previous work

on the capsid subunit [1] and current work on the entire capsid underline the useful-

ness of simplified but accurate geometric models in elucidating various capsid features,

especially those of general import.

4.5 Materials and Methods

4.5.1 Natural capsids studied

We studied dihedral angles within x-ray structures of all natural capsids unambigu-

ously denotable as canonical capsids (capsids that are representable by monohedral

tilings) [1]. The stringency of these qualities is crucial to the dihedral angle compar-

isons, and so only a portion of those capsids deemed as “canonical” in [1] were stud-

ied (those with stricter adherence to monohedrality). The studied virus families, T

numbers, and PDBIDs obtained from the capsid repository VIPERdb [46] are as fol-

lows: Nodaviridae(T = 3): fhv (available only in VIPERdb [46]), 1nov, 2bbv, 1f8v;

Sobemoviridae(T = 3): 1smv, 1x35, 1f2n, 4sbv, 1ng0; Tombusviridae(T = 3): 1opo,

1tnv, 1c8n, 2tbv; Tetraviridae(T = 4): 1ohf; Siphoviridae(T = 7l): 2frp, 2ft1, 2fs3, 2fsy,

1ohg; Birnaviridae(T = 13l): 1wce.

4.5.2 Analysis of angles within natural capsids

Looking at dihedral angle similarities within two quasiequivalent interfaces (say, be-

tween adjacent subunit pairs A-B and C-D; an example of a pair “1”-“2” is shown in

Figure 4.1A) becomes easy when dealing with capsids representable as monohedral

http://viperdb.scripps.edu/info_page.php?VDB=fhv
http://viperdb.scripps.edu/info_page.php?VDB=1nov
http://viperdb.scripps.edu/info_page.php?VDB=2bbv
http://viperdb.scripps.edu/info_page.php?VDB=1f8v
http://viperdb.scripps.edu/info_page.php?VDB=1smv
http://viperdb.scripps.edu/info_page.php?VDB=1x35
http://viperdb.scripps.edu/info_page.php?VDB=1f2n
http://viperdb.scripps.edu/info_page.php?VDB=4sbv
http://viperdb.scripps.edu/info_page.php?VDB=1ng0
http://viperdb.scripps.edu/info_page.php?VDB=1opo
http://viperdb.scripps.edu/info_page.php?VDB=1tnv
http://viperdb.scripps.edu/info_page.php?VDB=1c8n
http://viperdb.scripps.edu/info_page.php?VDB=2tbv
http://viperdb.scripps.edu/info_page.php?VDB=1ohf
http://viperdb.scripps.edu/info_page.php?VDB=2frp
http://viperdb.scripps.edu/info_page.php?VDB=2ft1
http://viperdb.scripps.edu/info_page.php?VDB=2fs3
http://viperdb.scripps.edu/info_page.php?VDB=2fsy
http://viperdb.scripps.edu/info_page.php?VDB=1ohg
http://viperdb.scripps.edu/info_page.php?VDB=1wce
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tilings (canonical capsids). This is because the subunits within such capsids have

little subunit-subunit architectural variability (interface-controlling quasi-equivalent

switches notwithstanding). Consequently, to check for the similarity between two in-

terfaces A-B and C-D, one need only structurally align the carbon alpha traces of AB

and CD (both treated as rigid units instead of two proteins) and calculate the normal-

ized root mean square deviation (RMSD). Low RMSD values indicate that the dihedral

angles between subunits A and B and subunits C and D are similar (or identical, if the

RMSD is 0). From these analyses, we gathered T -specific dihedral angle patterns for

hexamers (Figure 4.2A).

4.5.3 Creating capsid models

A majority of capsids possess trapezoidal subunits [1], whose interactions are de-

scribed in Figure 4.3A. It is trivial to conclude that subunit trimers caused by

“x-y” interactions will remain rigid as a unit if the subunits remain generally

rigid.Consequently, it is acceptable to treat each coplanar trimer as a single face, i.e.,

monohedral capsid models of 60T subunits may be represented as 20T equilateral tri-

angle faced polyhedra otherwise known as deltahedra. The simplest deltahedron, the

T = 1 deltahedron, is the twenty faced icosahedron. We created these deltahedra by

creating duals of deltahedra in Euclidean space (which, are, interestingly models of

buckeyballs) and then obtaining the deltahedra from those duals.

We produced the deltahedral dual (buckeyball) by first generating the graph con-

nectivity using the spiral code method described by Fowler et al. [36]. From this ab-

stract graph description, for each T number, we constructed a planar graph (Schlegel
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diagram) of the abstract graph using an algorithm modeled around one described by

Bor Plestenjak [77]. This planar graph was then wrapped around a sphere (using a

non-linear plane to sphere projection). The final minimized structure (minimized so

that all edge lengths are equal, will resemble an icosahedral buckeyball. The buck-

eyballs were transformed into their duals (whose graphs and general shape resemble

the required deltahedra). This structure was then minimized to insure that deltahedra

edges are equal (and set arbitrarily to 18Å). For the capsids studied (T = 1, 3, 4, 7, 13),

the final minimized structures were found to be in the lowest energy possible, and

were mostly icosahedral (the T = 13 capsid was the exception; see the note on auxil-

iary proteins in the Results and Discussion section). These structures were used for

the final analysis of (1) hexameric dihedral angle configurations and (2) availability of

buckling transitions.

4.5.4 Assaying subunit-subunit dihedral angle constraints

For our capsid structure to possess multiple interchangeable configurations, one would

expect a range of allowable values for at least some dihedrals within the capsid (espe-

cially within the hexagonal regions). We start with the obtained deltahedra and define

the dihedral angles across any edge i,j as φij . Each edge is shared by two equilateral

triangles (shown in isolation from the entire deltahedron in Figure 4.5). The relation-

ship between the dihedral angle φij and the distance between the non-common point

rab is

sin(φij/2) = rab/2m
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FIGURE 4.5: Squeezing and stretching dihedral angles. The dihedral angle φi,j be-

tween two equilateral faces sharing edge {i,j} (shown in two configurations) is dependent on

the distance between a and b (rab).

where m is the height of the equilateral triangles. Therefore, adding a single dihedral

restraint across the edge {i,j} is analogous to adding a new bond to the system with

potential energy

Ec =
1

2
kc(rab − r′ab)

2

It is imperative that the force constant kc << krest, where krest is the strength of

the bonds making up the deltahedron. This is required as we are studying elastic

deformations of dihedral angles (and the dihedral bond) and not the equilateral faces

of the deltahedra (although small deviations in shape are acceptable).

We assayed the effect of applying stress onto a dihedral angle with respect to re-

sulting energy change. The study is performed using the following algorithm:

Initialization step: (a) Identify the edge ({i,j}) whose dihedral angle is to be

studied. (b) Assign a restraint energy term Ec as shown above to the appropriate atom

pair ({a, b}, in the Figure 4.5). (c) Assign r′ab = rab, where rab is the length between

atom pair {a, b} in initially obtained (embedded) deltahedron . This ensures that at

the first step all energy terms equal zero (since the deltahedron is minimized).
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Cycle (till |r′ab| ≤ |r′max|): (a) Assign r′ab = r′ab + step size. This will cause a force

to be applied onto a and b as the {a, b} bond length will not be at its equilibrium value.

(b) Allow the structure to relax by energy minimization. At this point, we obtain the

total energy of the new structure.
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Chapter 5

Evolution of the virus capsid

Spherical viruses are highly efficient infecting machines, a fact that was made quite

clear to the free-food-eating journal club dwellers at Scripps, where a majority of the

graduate students present were struck by explosive diarrhea (a casual side effect of the

the norovirus life cycle, a spherical virus of gastrointestinal proclivity). Other spher-

ical viruses affect humans in other odious ways, causing suffering by way of deathly

illnesses and crop destruction. How did the viruses we see today come to be such

efficient animals? This question is primarily an evolutionary one, and this chapter

focuses on asking whether capsid evolution and natural selection are mathematically

describable.

Even though evolution plays an unambiguously important role in the working of

the virus, so far, general evolutionary pressures shaping capsid design have remained

elusive. Here, we present a periodic table of virus capsids based on geometric princi-

ples, which uncovers a strong, overarching and unprecedented evolutionary pressure

based on the notion of reducing the capsid’s design complexity (or “hexamer complex-

76
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ity”, Ch). This periodic table also offers geometric explanations to other capsid prop-

erties (rigidity, pleomorphy, auxiliary requirements, etc.) in the context of a system-

atic framework not presented before. Available virus structure databases and other

published data reiterate the predicted geometry-derived rules, reinforcing the role of

geometry in the natural selection and design of virus capsids.

This chapter is modified from the following journal manuscript: R.V. Mannige and

C.L. Brooks III. (2010) Periodic table of virus capsids: implications for natural selection

and design. Public Library of Science ONE, in press1.

5.1 The mystery of the missing capsids

Half a century of empirical data (and Chapter 4) tells us that a large array of capsid

sizes exist that range from tens to many thousands in subunit composition (see Fig-

ure 5.1A) [8]. Still, some sizes are rarer than others (the blue ones in Figure 5.1B2),

an observation that puzzled structural virologists as early as 1961 [11, 12]. The cause

for this discrepancy remains unexplained. Why are some capsid sizes not seen even

today? Are specific spherical viruses disadvantaged from an evolutionary perspective?

Or have we just not looked enough or in the right places? In this Chapter, we present

a conceptual framework useful in providing answers to these questions, while arriv-

ing at interesting observations about capsid classes, distributions, morphologies and

mechanical properties. The following points will be very useful in “solving” this rather

interesting mystery:

1For a copy of this manuscript, please contact me at ranjan@umich.edu
2Yes, they are blue.
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A

B

FIGURE 5.1: Inconspicuously missing capsids. The interesting variety of capsids seen

in nature (A) belies a sneaky evolutionary occult, since there are various theoretically sound

sizes–e.g., the blue ones in (B)–that are either rare or not found yet in nature. Why?
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1. Trapezoidal subunits can assemble, theoretically, into capsids of any

triangulation (T ) number (or size), i.e., the capsid design is scalable

(Section 2.1.3).

2. Endo angles emanate from pentamers and constrain specific dihedral angles

within capsids (Section 4.2.1).

3. The pattern of endo angles in the capsid is size specific, but not T -specific (it

is dependent on h and k instead, where T is a function of h and k; see

Equation 2.1)

5.2 Revising old concepts

Spherical capsids of all observed sizes may be characterized by two integers, h and k

(first discussed by Goldberg [13]; see Section 2.1.3), which describe the number of hex-

amers (h+k−1) one would have to “walk over” to get from one pentamer to an adjacent

pentamer within a completed capsid (the walk is shown as rays in Figure 5.2A) [12].

As a rule, a longer “walk” indicates the presence of more hexamers in the structure

(while the number of pentamers will always be the same at 12), which means a larger

capsid. A useful metric for capsid size–the triangulation number, T 3 (discussed in Sec-

tion 2.1.5)–was introduced by Caspar and Klug [12], where a capsid of triangulation

number T is expected to be comprised of 60T subunits, or 12 pentamers and 10(T − 1)

hexamers, i.e., T is a quantitative metric for capsid size. We now show, using “endo an-

gles”, that h and k (and not T ) are sufficient in providing a useful capsid classification

schematic.

3Where T = h2 + hk + k2 and h,k are the size indicating numbers.
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X Next, we will use the concept of the endo angle constraint to draw

connections between a capsid classification scheme (developed below) and

hexamer shapes present within a capsid.

X These concepts will then allow us to arrive at a metric for capsid complexity

(hexamer complexity), which is useful in explaining and predicting various

structural and evolutionary properties of the capsid.

5.3 Endo angles, classification, and history

5.3.1 Endo angle propagation and termination rules

As described discussed in Chapter 4 and a publication [2], endo angles (specific

subunit-subunit dihedral angles) that originate from the pentamer must propagate

through the adjacent hexameric lattice in what we call endo angle propagation (it is a

constraint imposed by pentamers onto adjacent hexamers, which is depicted as arrows

in Figure 5.2B). This constraint has been useful in predicting the existence of various

distinct hexamer shapes [2]; here, hexamer shape is defined by the hexamer pucker

or subunit-subunit planar angles within the hexamer (The number of hexamer shapes

available are enumerated in Section B.3). Figure 5.2C-D shows how multiple endo an-

gles within the capsid (not just hexamer) must interact, which is a new development.

5.3.2 Endo angles classify capsids

We find that the endo angle patterns produced by interacting endo angles within the

capsid (Figure 5.2) ensure the emergence of three general morphological classes (Fig-
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FIGURE 5.2: Capsids are scalable (A) and are formed of 12 pentamers (represented as dark-

ened pentagons) and a variable number of hexamers. The act of producing a pentamer from

a hexamer (B) imposes pentameric dihedral angle values (“endo angles”) onto its neighbor-

ing hexameric angles (discussed in Section 4.2.1 and Ref. [2]) which propagate through the

hexamers (depicted by arrows in B) in what we call endo angle propagation. We define endo

angle termination rules (C-E) for the three smallest capsids possessing hexamers (T = 3, 4, 7)

within a “face” (a triangular facet containing hexamers and three adjacent/neighboring pen-

tamers). An endo angle (black ray) propagating from the shaded subunit-subunit interface

belonging to a pentamer (C) is challenged and terminated by another endo angle (D, red

dotted ray) propagated from a neighboring pentamer, not completely visible for T = 4), re-

sulting in hexamer shapes and capsid endo angle features (E) that are h and k specific. In

particular the differences in h-k relationships ensure hexamers of distinct shapes per capsid

size (distinctly colored). This will be useful in arriving at a classification scheme.

ure 5.3) differentiated by their h-k relationship: class 1 (described by the relationship

h > k = 0), class 2 (h > k > 0), and class 3 (h = k)4.

5.3.3 Early attempts at size “existence theorems”

When this classification system crystallized, I was quite happy, and immediately set

out to answer the following question: are the classes telling us something about capsid

abundances and therefore virus evolution? That, it seems, was a premature question,

since the same classification system was recognized qualitatively by not one but two

4Henceforth, we assume that h ≥ k for simplicity’s sake, since, for our discussions, the difference be-

tween chiral l and d class 2 capsids is inconsequential. This is the case because the inherent connectivity

describing both chiral forms are identical, and so physical and geometric properties (such as shape and

rigidity) of the two chiral forms will be identical.
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FIGURE 5.3: The three virus capsid classes. All canonical capsids (made up of trapezoidal

subunits) may be built from a single type of pentamer and a repertoire of distinct hexamer

shapes (colored distinctly only once in each capsid; also described in Figure B.1). The hex-

amer shape is described by the number of endo angles it displays. Endo angles are depicted

as bold lines within a “face” in its isolated (right) and capsid environment (left) for the first

three capsid sizes in each class (excepting T = 1).

groups [11, 12] in the early 1960s!5 To add to my disappointment, they had used the

classification for purposes identical to mine: to explain absentees in the capsid size

diversity or T -range. Specifically, class 2 capsids (in our schematic) had not yet been

observed, and both reports postulated that capsids from this class must be absent for

specific (but distinct) physical reasonings [11, 12].

Since then, capsids from all three classes have amply been seen (abundances are

reported in Table B.1), i.e., the classification system can not be used to make direct pre-

dictions about capsid existence. Consequently, this topic, which we are readdressing

now, appears to have been latent since 1962.

5Fig. 10 in Ref. [11] and Fig. 8 in Ref. [12]; although both neither account directly linked h and k to

class type.
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5.4 Introducing Hexamer complexity (Ch).

The utility of the class system is not entirely lost, however; Figure 5.3 allows us to

obtain the minimum number of distinct hexamer shapes (discussed in Ref. [2] and

defined in Figure 5.2) required to form a canonical capsid of specific capsid size. We in-

troduce the hexamer complexity (Ch) as the number of distinct hexamer shapes present

in a capsid (a higher number of distinct hexamer shapes per capsid reflects a higher

Ch). One may obtain Ch by counting the number of distinctly colored (shaped) hexam-

ers in Figure 5.3 (alternatively, an equation to calculate Ch from h and k is given in

Equation B.18)6. We reason that capsids with higher Ch are evolutionarily disfavored.

5.4.1 High Ch capsids require more auxiliary control during forma-

tion.

Evidence indicates that capsid formation is nucleated [78], often starting with a single

capsomer species (e.g., pentamers [79])7, and proceeding to completion by the addition

of small subunit clusters (or single subunits). In T = 1 capsids, where all subunits are

in identical/equivalent environments [12], nucleated assembly will be possible with no

additional machinery (except for the predefined angle of incidence for each subunit-

subunit interaction site). However, the formation of two or more capsomers from a

single interaction site will require the employment of additional machinery to ensure

high yields of the native state. For example, quasi-equivalent switches [14, 15] are

required for the proper assembly of capsids containing two distinct capsomers–a pen-

6Note that in our schematic, hexamers in distinct environments are allowed to possess the same shape.
7For the purposes of this Chapter, a capsomer is a generally symmetric cluster of either five or six

subunits that are the sole building blocks of a capsid.
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tamer and one type of hexamer (i.e. Ch = 1). The addition of a second hexamer shape

(Ch = 2) necessitates the requirement of a second mechanism such as auxiliary pro-

teins [80] for proper assembly (discussed earlier in theory [2] and evidenced from the

observation that all recorded Ch > 1 or T > 7 capsids are known to require auxiliary

proteins for assembly [14]).

FIGURE 5.4: Evolutionary discrimination of spherical capsids. (A) As predicted by the in-

verse Ch rule, capsids with high hexamer complexity are under-represented in nature as ev-

ident in the observed versus unbiased capsid abundances (% of families that display capsids

of specific Ch). (B) Although Ch is directly related to (h,k), it is not conveniently correlated

with capsid size (T ) or class (symbols), which could explain why capsid size discrimination

remained elusive until now.

5.4.2 Capsid Ch ∝ 1/capsid abundance

For virus capsids requiring more distinct hexamer shapes (larger Ch) additional mech-

anisms to stabilize those new shapes at exactly the right positions within the forming

capsid are likely also needed8, the interplay of which, we propose, would be theoreti-

cally possible to choreograph but unduly complex. Accordingly, we predict that canon-

ical capsids with larger Ch will be encountered with a lower frequency in nature9.

8Lest off-pathway and fatal configurations would dominantly form.
9It is beyond any doubt that complexity is often not the sole criterion for natural selection. In fact, if

that was the case then humans would never be given the chance to come into existence. But alongside

natural selection arises the notion of the niche, that states that, among organisms that live within a niche

and that compete for the same natural resources, the most efficient design will likely prevail. This comes

into play when we consider spherical viruses that are dissimilar in Ch but operate under identical host

and reproductive constraints. In those situations, the capsid with a simpler and more efficient design,
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Support for this relationship (that higher Ch will be encountered with lower fre-

quency in nature) is presented in Figure 5.4A (and discussed further in Figure B.2),

where there is an inverse correlation between capsid Ch (calculated using Equa-

tion B.18) and observed capsid abundance (for Ch > 0)10. However, this is not the

case for unbiased capsid distributions (red line) where we assume no evolutionary fa-

voritism (i.e., if we assume that each capsid size or T is equally probable to exist for the

size range observed; T = 1 through 219). Also apparent in this data is the observation

that Ch > 2 capsids are under-represented by a factor of ∼ 12 (∼ 63% : 5% for unbiased

vs. observed capsid abundances) when compared to the calculated distributions for the

observed size range11. This suggests that a large evolutionary pressure in aversion to

high hexamer complexity may be at play in nature.

5.4.3 Capsid Ch is related to class (h,k) not size (T ).

Although not directly relatable to capsid size (T ) and class (Figure 5.4B), Ch is easily

obtained from the Goldberg parameters h and k (Equation B.18) from which we can

show that Ch > 2 when both h > 1 and k > 1 (Table B.2). Ch rules are concisely

reiterated in periodic form in Figure 5.5C such that, through each period (row), hex-

amer complexity (Ch), class number, and triangulation number (T ) increase from left

to right, allowing us to predict that capsids belonging to the right side of this table

i.e., those with low Ch, will be more efficient than the higher Ch capsid in assembling, and therefore

propagating.
10Data, listed in Section B.11, were pooled from EM and X-ray structure repositories [8, 81]. We did

not distinguish between capsids containing external lipid membranes and those that do not, since, often,

such lipids are post assembly features (e.g., herpesvirus [82]).
11If we calculate expected distributions for a more conservative range of T = 1 through 31, the unbiased

value is still ∼ 6 times higher than our observed 5% at ∼ 29%.
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FIGURE 5.5: Periodic table of spherical capsids. Trends in Ch are easily discerned from the

periodic table, where, in each period (row), T , class number and Ch increase (or remain the

same), while trends in other capsid properties such as rigidity may also be deciphered.

(h, k > 1) are evolutionarily disfavored12. Since capsid class describes distinct geome-

tries, we expect that this table will also be useful in describing physical properties such

as capsid rigidity.

Our complexity rules, although arising from geometric analysis of canonical capsid

models [2] (further discussed in Section B.1), appear to be applicable to almost all

observed capsids, indicating that hexamer complexity may be a universally important

12Note that there is no one-to-one mapping of T on (h, k); e.g., T = 49 may be constructed from (h, k)
pairs (7, 0) and (5, 3) assigned to classes 1 and 2 respectively, i.e., some T numbers will be repeated in the

periodic table.
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concept (if we include only canonical capsids [1], the number of Ch > 2 capsids reduce

to zero!). We will shortly discuss the few “rule breakers”.

5.4.4 Evolution/natural selection vs. design

At this point, it is important to distinguish design from evolution. From a design

perspective, capsids of any size (or T number) may be easily “built” from an intricate

set of rules, like in a Lego R© construction kit. However, we suggest that, from an

evolutionary perspective, the probability of “existence” is contingent upon whether a

capsid structure can be produced via easily manageable assembly mechanisms. This is

especially interesting since capsids with high Ch do not indicate larger size but just a

more complicated design. E.g., T = 12 capsids, although smaller than T = 13 and T =

16 capsids, are vastly more complicated and under-represented in nature. Although

our complexity-based rules imply a form of evolutionary pressure, other pressures will

likely exist, whose effects might be overlaid to give a more intricate understanding of

the available capsid distributions (e.g., geometrically simple T = 1 capsids, although

low in Ch, may be selected against due to restrictions on genome size; see Figure B.2).

5.5 Understanding the rule breakers and charting a

phase diagram

5.5.1 Rule breakers

There are two major groups of Ch > 2 outliers/rule-breakers–the small (T < 31) and

large (T > 100) group–that display distinct characteristics. Markedly, most of the
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small rule-breakers possess an internal support/core of lipid or protein [83–85], or

display unusually high number of protrusions and putative proteins associated with

their capsomers [86]. These examples indicate that evolutionary constraints of a geo-

metric nature placed upon isolated capsids may be overcome by employing “universal

scaffolds” such as protein/bilayer cores and excessive auxiliary proteins useful in main-

taining all distinct capsomer/hexamer shapes (Recently, another small rulebreaker not

used in our study was also shown to have an internal membrane [87]). We predict that,

generally, the amount of “extra subunit density” in the electron density of a capsid is

inversely related to Ch.

The remaining three (big) capsids [88, 89] that break our geometric rules possess

thousands of subunits. This is interesting, since these capsids are possibly of large

enough size that the “discreteness” (or geometric/molecular subunit nature) of the cap-

sid shell is less influential than the shell’s bulk properties [90], which would allow for

those capsids to be exclusively modeled as elastic shells. This knowledge is helpful in

constructing a proposed phase diagram for spherical capsids (Figure 5.6).

X The rule breakers (high hexamer/design complexity structures) are either

very big (T > 100) or are small with permanent scaffolds.

5.5.2 Phase diagrams

As described above, it is inevitable that, at a certain triangulation number (T ′ in Fig-

ure 5.6), the capsid morphology will not be influenced by molecular/subunit/hexamer

properties (where geometric relationships hold), beyond which capsids may be mod-

eled exclusively by continuum elasticity theory [90]. Work using continuum elasticity

has shown that only two capsid shapes must exist–spherical and icosahedral, and that
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the transition between them is demarcated by the capsid’s Föppl-von Karman num-

ber [65, 66], which is directly proportional to T (especially if the size of the subunit

is generally the same)13. It is then interesting that the large (T > 100) capsids are

all icosahedral in shape, no matter what class they are present in. In our “phase dia-

gram”, we also introduce a theoretical capsid size T ′′ (Figure 5.6 arbitrarily assumes

that T ′′ > T ′) that differentiates between the sphere-icosahedron boundary predicted

by continuum elasticity theory (the sigmoidal curve in Figure 5.6 denotes the change

in sphericity discussed before [65] that is dependent on f and hence capsid size, T ).

FIGURE 5.6: Spherical capsid phase diagram. We describe two specific capsid sizes

that remain to be elucidated (T ′ and T ′′; the diagram arbitrarily assumes that T ′′ > T ′).

T ′ describes the limit of the geometric domain, beyond which our geometric assumptions

and predictions may not hold. We expect that all capsid sizes greater than T ′ will be exclu-

sively described by continuum elasticity. We also expect that, beyond T ′ (i.e., in the purely

continuum domain), the Föppl-von Karman number (f ) [65, 66] that dictates spherical vs.

icosahedral morphology will depend primarily on T , and so there will be a capsid size (T ′′)

that demarcates the allowance for spherical and icosahedral morphologies in the purely con-

tinuum regime (the sigmoidal curve represents the dependence of f and hence morphology

on T ). These assumptions consolidate all observed instances of spherical capsid morphology.

13In the continuum domain: The Föppl-von Karman number is f = Y R2/κ [65], where Y and κ are

bulk properties of the protein subunit, and R is the capsid’s radius. If we assume that proteins, at

an approximation, have similar size and bulk properties, then f will be directly proportional to R and

therefore also to T .
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The phase diagram brings to light a curious absence. So far, “hexamer complex-

ity” was used to explain the elusiveness of certain capsid sizes (the h, k > 1 capsids

peppered through size or T -space). There is, however, a swath of the T -space (so far,

between T = 31 and 147) where no capsids, to our knowledge, have been reported.

Beyond this T number only purely icosahedron-shaped capsids have been observed. It

will be interesting to see whether capsids from this region (31 < T < 147) will be found

in the future, and if so, what their shapes will be. Note that the diagram, although fit-

ting all observed data, represents one situation where T ′′ > T ′ which does not need to

be true (since we could also have T ′′ ≤ T ′, where “spherical capsids” in the continuum

domain will never exist).

5.5.3 Continuum theory and the phase diagram.

In continuum elasticity theory, f describes capsid morphology which ranges from com-

pletely spherical (for smaller f ) to completely faceted or icosahedral (for lager f ). In

the geometric sense, the sphericity of capsids in the class system decrease in the fol-

lowing manner: class 2 > class 3 > class 1. Within the geometric domain (0 < T < T ′),

it is certain that shape is dictated by capsid class (described by h-k) and not directly

by capsid size (for example, T = 16 capsids are more faceted than T = 19 and T = 21

capsids; and T = 25 capsids are more faceted than T = 28 and T = 31 capsids). In light

of this, if the continuum domain ranges to even the smallest capsids, we predict that

f would increase non-monotonically (i.e. f would fluctuate) through capsid size (T -

space) till T ′, after which it will increase relatively smoothly and monotonically (w.r.t.

T ) due to the absence of geometric (or h-k based) influences (Figure 5.6). It will be



Chapter 5. All viruses are not alike ... 91

interesting to find whether theoretical calculations are able to reiterate this trend, as

it would then be possible to obtain an estimate for T ′.

5.6 Further implications

5.6.1 Classes, shapes and buckling

Because capsids from different classes display markedly different geometries, they are

bound to display different physical properties. For example, since icosahedra and pen-

takis dodecahedra are geometrically rigid14, class 1 and class 3 capsids that employ

such shapes should be unable to undergo buckling transitions (crucial virus life cycle

events) [63, 91]. However, we expect class 2 capsids to be able to undergo such transi-

tions due to their highly faceted (“harmonica like”) geometry, which allows for comfort-

able sampling of alternative structures. Also, class 1 and 3 capsids display a complete

cage of endo angles spanning from pentamer to adjacent pentamer that serves as a

frame to rigidify the structure. This is not the case for class 2 capsids, where endo

propagations are prematurely terminated. Experimental work on one class 2 capsid,

HK97 [63, 91], along with studies on capsid models (T = 1 through 7 and 13) [2] lend

credence to this hypothesis. Still, the existence of naturally buckling capsids of sizes

other than T = 7 remains elusive.

14This is a basic result of geometry.
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5.6.2 T -switching and pleomorphy

The periodic nature of capsid hexamer content (Figure 5.5C) is also useful in under-

standing “T -switching”: a process that permits canonical capsid subunits to more eas-

ily sample capsid architectures containing similar hexamer shapes. This was shown

to be true for a T = 4 capsid subunit that, upon mutation, exclusively formed a range

of class 1 capsids [55] that have similar hexamer shapes. This allows for a segue to

understanding currently intractable and deadly pleomorphic viruses like ebola and

arenaviruses. For example, from the above T -switching rule, the available diversity of

an arenavirus (described by the observation of T = 3, 4, 9, 12 and 16 capsids in a single

sample) [92] may only be explained if we assume that the biologically relevant form of

the arena virus is the T = 12 capsid (since it exclusively displays all hexamer species

required for all the other listed capsid sizes excluding the flat hexamer, which allows

us to assume that all other sizes are residual byproducts of inefficient T = 12 capsid

assembly). Other predictions of this sort are easy to compile from Figure 5.5C and

remain to be completely developed, explored and validated.

5.6.3 Non-icosahedral capsids

Although the framework presented doesn’t appear to readily explain non-spherical

capsids (some are just “slightly” non-icosahedral, such as the natively prolate phi29

capsids [51], while others are wildly different in form, such as ebola with its natively

filamentous shape), those capsids, like their icosahedral counterparts, also display cap-

somer sub-structures (for example phi29 capsids contain pentamers and hexamers,
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while there is evidence that filamentous ebola capsids may contain hexamers as well

as octamers [93]). In light of this, the geometric constraints analogous to endo angles

that affect capsomer shape may be useful in obtaining insights into non-icosahedral

capsid morphology, behavior, and classification. It will be exciting to see whether in-

corporating the non-icosahedral capsids into an expanded capsid periodic table will be

possible.

5.7 Take home

Hexamer complexity (Ch) and the periodic table provide a framework that ex-

plains elusive evolutionary pressures on capsid design, T -switching, mechanics (rigid-

ity/maturation) and pleomorphy. We anticipate that many other features may be over-

laid upon the schematic developed here, allowing for a comprehensive and systematic

understanding of, first, spherical capsids and then virus capsids of varied geometries.
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Appendix A

Appendix: Capsid Geometry

This is the supporting material to Chapter 4.

A.1 Canonical intra-pentameric dihedral angles interact

at ∼ 138.19
◦

Hexamers and pentamers within a canonical capsid (those capsids representable as

“monohedral tilings” that display few holes, few overlaps and structural invariability;

please see Section 3.1.1.3 for a more rigorous description) may be treated as a six- and

five-coordinated set of plates respectively (Figure A.1A, B).

Statement: Any canonical subunit that possesses the ability to form both pen-

tamer and hexamer must possess intra-pentamer dihedral angles of ∼ 138.19◦ (i.e., in

Figure A.1D,φ ∼ 138.19◦).

From the canonical capsid definitions (Mannige and Brooks, 2008), we get that

(1) subunits can form both flat hexamers (Figure A.1B) and “curved” pentamers (Fig-
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FIGURE A.1: Showing that φ ∼ 138.19◦. (A) indicates that n-valent clusters formed from

trapezoids (shown in the diagram for hexamers) may be reduced/simplified to clusters of

equilateral triangles for the purpose of analyzing dihedral angle properties. Hexamers (B)

and pentamers (C) in canonical capsids are formed from the same subunit interface that

interact at varying dihedral angles. A pair of adjacent subunits is shaded in in the pentamer

(C) and isolated environment (D), which will be used to obtain a relationship for the dihedral

angle (φ).

ure A.1C) from the same interface, and (2) all angles within a pentamer are identical

(which is a reasonable assumption given that i. these pentameric angles are formed

from identical interfaces and not quasi-equivalent ones, and ii. a five-fold rotational

symmetry element (axis) falls perpendicular to the center of pentamer in the crystal

structure).

Proof: Specifically, from the right triangle b′o′′a in Figure A.1D, we can obtain a

relationship for the intra-pentamer dihedral angle (φ) and edge lengths:

sin(φ/2) =
|o′′a|
|ab′| (A.1)

We now assume that the edge of the equilateral triangular faces is 1 with no loss of

generality. Given that right triangle ab′o is a 30-60-90 triangle and that |oa| = 1, we
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get

|ab′| =
√

3/2 (A.2)

Substituting Equation A.2 in Equation A.1 and rearranging, we get,

sin(φ/2) =
2√
3
|o′′a| (A.3)

Theta (θ) is the angle of the radiating edges once projected to a plane that contains

a,b,c,d,e (there must be such a plane since all dihedral angles are set to the same

value). From Figure A.1C, we get

|o′′a| = |o′a| sin(θ) (A.4)

Substituting Equation A.4 into Equation A.3, we get

sin(φ/2) =
2√
3
|o′a| sin(θ) (A.5)

Also, from the 30-60-90 triangle o′aa′ in Figure A.1B, we get

|o′a| =
|a′a|

sin(θ/2)
=

1

2 sin(θ/2)
(A.6)

Substituting Equation A.6 in Equation A.5, we get

sin(φ/2) =
sin(θ)√

3 sin(θ/2)
(A.7)
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or

φ = 2asin

(

sin(θ)√
3 sin(θ/2)

)

(A.8)

If all the dihedral angles angles within the pentamer are alike, then θ = 2π/5 (this

generalizes to θ = 2π/i if the pentamer is actually an i-mer), and

φ = 2asin

(

sin(2π/5)√
3 sin(π/5)

)

∼ 138.19◦ (A.9)

This will be true for any set of canonical capsid subunits that assemble into pentamers,

and is also seen in true icosahedra (twenty faced deltahedra) that describe T = 1

capsids, which, we claim, allows for T > 1 to T = 1 transformations (see main text).
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FIGURE A.2: Hexamer angle profiles. Angle profiles of hexamers in unique environments

when compared to a pentameric endo angle of the same capsid (low RMSD values indicate

more pentamer-like angles) shown for individual capsids (indicated by their PDBID or ID).

This graph is an expanded version of Figure 4.2A.
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FIGURE A.3: Capsid model buckling profiles. Energy (y-axis) vs. angle constraint dis-

equilibrium (r0 − r′; x-axis) profiles for individual angles (labeled A1 thru A6 for a unique

hexamer and an additional A7 thru A12 for the second hexamer) within hexamers for cap-

sids with T = 3, 4, 7, 13. T = 1 pentameric angle profiles are included to give a sense for rigid

angle profiles. Only T > 4 canonical capsids hexamer angles (whose profiles are highlighted

green) appear to sample multiple conformations upon application of small forces indicat-

ing that buckling transitions are possible for only T¿4 canonical capsids. This figure is an

expansion of Figure 4.4B in the main text.
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Appendix: Capsid Periodic Table

This text is the supplementary material to Chapter 5 and performs the

following functions:

X Defines hexamer complexity (Section B.2) and shape (Section B.3).

X Provides additional data on capsid abundances (Section B.5, Figure B.2)

further indicating the utility of hexamer complexity (Section B.2) and the

periodic table (Figure 5.5C) in explaining evolutionary pressures (Section B.4).

X Critically evaluates the validity of our results (Section B.6).

X Provides a formalism for calculating hexamer

complexity (Sections B.7-B.10).

B.1 Canonical vs. noncanonical capsids

All our specific predictions are directed towards canonical capsids where subunits

(within any given capsid) are tilable and nearly-invariant in shape [1]. This is be-

cause the consequence of introducing/imposing curvature into the shell is conveniently

imposed as endo angle propagations [2], which then allows for hexamer shapes to be

109
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precisely characterized (Section B.2). However, that our predictions apply to all struc-

turally characterized spherical capsids indicate parallel constraints applied to non-

canonical capsid hexamers. It will be interesting to see the differences and similarities

between the constraints acting on canonical and noncanonical capsids.

B.2 Defining hexamer complexity Ch

Hexamer complexity Ch is the minimal number of distinct hexamer shapes that a

canonical capsid [1] of specific size (defined by h, k or T ) contains. The possible hex-

amer shapes that a canonical capsid may possess are shown in Figure B.1B (derived by

inspecting Fig. 2 and assuming the working of endo angle propagation and termination

rules in Figure 5.2).

FIGURE B.1: Hexamer shapes available to capsids. (A) Although planar endo angle con-

straints are able to freely propagate within hexamers (left), only one complete non-planar (or

“endo”) angle constraint/propagation may be present within a hexamer (collinear propaga-

tions not included). If two non-linear/non-parallel propagations meet, one must terminate

at that meeting point, which means that multiple non-linear endo angles may exist within a

single hexamer only if terminated at its center. (B) Possible arrangements of terminal endo

angles (reflecting possible hexamer shapes) are listed (endo angles are represented as lines

in the hexamer diagrams and as e in the hexamer angle sequence; e
′ represents an inverse

endo angle). The hexamers are colored in accordance with the Figures 5.3 and 5.2.
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B.3 Counting hexamer shapes

In Section 4.2.1, we showed that different arrangements of endo dihedral angles (des-

ignated “e”) among non-endo, or exo angles (designated “x”) in a hexamer define dis-

tinct hexamer shapes [2]. This assumption has been shown to be true for those natural

canonical capsids that have afforded investigation [2]; specifically, we showed that the

smallest capsids from each class (T = 3, 4, 7) possess distinct hexamer shapes, named

in accordance with the hexamer coloring in Figs. 2 and 3: red (exexex; “ruffled”), blue

(exxexx; “wing shaped”), and yellow (exxxxx, “single-pucker”) hexamer shapes respec-

tively [2]. These capsids possess the lowest Ch of one.

Larger capsids increase in Ch due to the requirement of additional hexamer shapes

colored in Fig. 2 as green (xxxxxx; “flat”1) and cyan (e′xxe
′xx, shaped as an “inverse

wing” possessing inverse endo angles e
′ whose acute angles face outward).

B.4 Capsids with low Ch are preferred

From Figure B.2, we can surmise that, for the range of T numbers observed (T = 1...219

and for a more conservative/truncated range, T = 1...31), capsids with lower Ch appear

to be preferred as evidenced by a shift to lower Ch distributions in observed versus

expected capsid distributions. Table B.1 lists the first twelve capsid sizes (T ) by class;

those sizes displaying Ch > 2 are indicated by boldface.

A major difference between the red and black graphs in Figure B.2 comes in the

behavior in abundances of expected Ch = 3 capsids, that mostly belong to the h > k > 1

1In the h > k = 1 capsids, the green hexamer is not perfectly flat, but will tend towards possessing

identical dihedral angles, which, for a hexamer, optimally would result in generally flat hexamers.
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FIGURE B.2: Capsids tend to prefer lower Ch than expected. Plotted in each graph is

Ch versus observed (solid, black lines) and expected abundances (dotted, red lines) obtained

from 119 capsids (A) and 52 families (B) shown for the complete available capsid size range

(T = 1...219; left) and a truncated range (right). The expected dataset assumed that no

capsid size(T ) is preferred (i.e., it assumes a uniform capsid size distribution among viruses).

Families that display two capsid sizes were split to maintain one Ch per family entry. This

figure is an expansion of Figure 5.4A.

regime. Specifically, as we increase from the (n−1)th period to nth period in the periodic

table, class 1 (where Ch mostly equals 2) and class 3 entries (where Ch mostly equals 4)

increase by 1, while the class 2 entries (where Ch mostly equals 3) increase in a more-

or-less arithmetic progression by (n − 1) (evident in Fig 3C in the triangular shape of

the class 2 group versus linear shapes of class 1 and class 3 groups respectively).

TABLE B.1: The distribution of capsid sizes into the three morphological classes described by

the relationship between the capsid’s h and k. The percentage abundance (A(%)) of capsids

in the three classes were obtained from a collection of 118 non-redundant capsids belonging

to 39 diverse capsid families.

Class h-k A(%) Triangulation (T ) number series

1 h > k = 0 33.9 1 4 9 16 25 . . .
2 h > k > 0 22.8 7 13 19 21 . . .
3 h = k 43.2 3 12 27 . . .
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B.5 Observed capsid abundance ∝ 1/Ch

Finally, excepting Ch = 0 capsids (i.e., capsids that contain no hexamers, or T = 1

capsids), there is an inverse relationship between Ch and observed capsid abundance

(black lines in Figure B.2). The low observed abundance for Ch = 0 capsids is expected,

given that most virus families with true Ch = 0 appear to be too small to accommodate

enough genomic material to infect as a primary source (therefore, most true T = 1

capsids belong to “satellite viruses” that are only able to infect hosts pre-infected by a

primary infector, presumably since those virus capsids provide insufficient volume to

contain an independent infectious genome). Here, the additional/stronger evolution-

ary impediment appears to be a lower bounded genome size preference (i.e., a non-

geometric preference imposing a constraint of Ch > 0 may be overlaid with the inverse

Ch rule to obtain the observed or black graphs in Figure B.2).

B.6 Is there a data-collection bias?

Here, we address the question: are our findings a result of a basic inability to sample

structures of large Ch, or does the data truly reflect our predictions?

Figure B.2 (reflecting the rest of our data) was produced from a compilation of

capsids obtained from (1) X-ray crystallography, whose prowess lies in obtaining high

resolution capsid 3D structures of “small” sizes (e.g., T = 1...25), and (2) electron mi-

croscopy, where large capsids do not disallow the elucidation of capsid size or T number

(which can be obtained from simple electron micrographs, if not by 3D capsid recon-

structions). Consequently, we argue that if observable to a structural virologist, any
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new capsid of any size would not be far from finding a public domain home (thereby

finding its way in our graphs). Thus we argue that our observed data does not reflect

discrepancies in data collection as much as it lends credence to our geometric predic-

tions.

Furthermore, if capsid collection were to be size constrained, it would sill not mat-

ter so much, since our existence rules are not size dependent as much as h, k dependent

(e.g., although smaller than T = 25, the T = 19 capsid is expected to be higher in hex-

amer complexity and therefore lower in abundance, which is the case).

B.7 Basic definitions

The Kronecker delta function (δx) is quite integral to our future formalisms, and is

therefore introduced here as a special topic. Specifically, δx (or δx,0) is an algorithm,

that outputs 1 if x=0 and 0 otherwise, i.e.,

δx =















1 if x = 0

0 otherwise

(B.1)

We can represent this algorithm by the limits

δx = lim
α→∞

1

eαx2
(B.2)

or

δx = lim
α→∞

2eαx

1 + e2αx
(B.3)
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which may be used later on.

We also utilize a convenient equation that produces a binary output after compar-

ing two non-negative integers a and b:

∆a>b =

b
∏

i=0

(

1 − δ(a−i)

)

=















1 if a > b

0 otherwise

(B.4)

Some basic definitions:

δa (1 − δa) =















1 × (1 − 1) if a = 0

0 × (1 − 0) otherwise

(B.5)

i.e., for all cases,

δa (1 − δa) = 0 (B.6)

Also, it follows that

aδa = 0 (B.7)

and

δa∆a>b = δa(1 − δa) × [(1 − δa−1)...(1 − δa−b)]

= 0 × [(1 − δa−1)...(1 − δa−b)]

= 0

(B.8)

B.8 Obtaining endo propagation length φh,k

Definition of endo angle propagation length φh,k. It is the distance (in capsomers, in-

cluding the originating pentameric angle) that the endo angle is allowed to propagate
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from a pentamer into the hexamers before being intercepted (or terminated). Please

refer to Figure 5.2 for a review of the endo angle propagation and termination rules.

From Figure 5.2C, we can obtain the endo angle propagation length for a capsid of

size h, k:

φh,k =















h for class 1, i.e., if k = 0

k otherwise, i.e., if k 6= 0

(B.9)

which can be described as

φh,k = (hδk + k) =















h if k = 0

k otherwise

(B.10)

B.9 Obtaining Ch from h, k and φh,k

Here, we obtain a mathematical/algorithmic expression for Ch. We can treat the hex-

amer complexity Ch as a sum of its components Ch
X

, where X may be one of the five

distinct hexamer shapes (i.e., X ∈ (W,R,S, F, I)), and Ch
X

= 1 only if the hexamer

shape “X” exists within the capsid. We now attempt to obtain the Ch components for

each hexamer shape.

Wing shaped (W). The presence of two linear adjacent endo angles within a hex-

amer automatically indicate that wing shaped hexamers must exist within the capsid,

since the only hexamer that can accommodate two linear angles is the winged shape of

profile exxexx [2] (we define a linearly adjacent angle set as a set of two angles within

the hexamer of position i and i + 3, where i = i + 6, indicating the cyclic nature of

the angles). Therefore, we will expect wing shaped hexamers when φh,k > 1. So, the
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hexamer complexity contribution by the presence of a wing shaped hexamer will be

Ch
W

= ∆((hδk+k)>1)
(B.11)

Single pucker shaped (S). We can define the closest distance (in capsomer units)

between two adjacent pentamers (Ph,k) as

Ph,k = (h + k) (B.12)

Which is an interesting value, since it is also the maximum number of capsomers that

the endo angle can propagate through, i.e.,

Ph,k ≥ φh,k (B.13)

We can also show that if φh,k ≥ Ph,k/2, then the endo angles will form a com-

plete/unbroken cage around the capsid (which is seen in classes 1 and 3). However,

if we do not have “complete propagation”, then we are guaranteed the existence of a

single pucker hexamer, i.e.,

Ch
S

= ∆(Ph,k>2φh,k)

= ∆((h+k)>(2hδk+2k))

= ∆(h>(2hδk+k))

(B.14)

Ruffle shaped. We also know that if h = k (class 3) then Ph,k = 2φh,k (because if

h = k then 2φh,k = 2h = h + k = Ph,k/2) and three adjacent endo angles will terminate
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TABLE B.2: Hexamer complexity, Ch from Equation B.18.

T h k Ch
W

+ Ch
S

+ Ch
R

+ Ch
I

+ Ch
F

= Ch

1 1 0 0 0 0 0 0 0

3 1 1 0 0 1 0 0 1

4 2 0 1 0 0 0 0 1

7 2 1 0 1 0 0 0 1

9 3 0 1 0 0 0 1 2

12 2 2 1 0 1 1 0 3

13 3 1 0 1 0 0 1 2

16 4 0 1 0 0 0 1 2

19 3 2 1 1 0 0 1 3

21 4 1 0 1 0 0 1 2

25 5 0 1 0 0 0 1 2

27 3 3 1 0 1 1 1 4

28 4 2 1 1 0 0 1 3

31 5 1 0 1 0 0 1 2

36 6 0 1 0 0 0 1 2

at the central hexamer causing the presence a hexamer of exexex profile and of ruffled

shape, so

Ch
R

= δ(h−k) (B.15)

Inverse-wing shaped. We know that the ruffled exexex profile is rigid [2], so even

the exo (x) to must remain constrained. Since this dihedral’s acute angle faces the out-

side portion of the capsid, we call this special angle the inverse endo (e′) angle. Since

inverse endo angles are constrained, they must propagate between any two ruffled

hexamers, resulting in the formation of a special inverse-wing shape in large enough

capsids (h, k > 1) containing ruffled hexamers (h = k), i.e., we have

Ch
I

= Ch
R
∆(h>1) = δ(h−k)∆(h>1) = δ(h−k)∆(k>1) (B.16)
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Flat shaped. Finally, we know that a capsid of large enough size (h > 2) irre-

spective of class, must possess hexamers that are generally unaffected by endo angle

constraints which are therefore generally flat, so

Ch
F

= ∆(h>2) (B.17)

Combining the above Ch components, our resulting relationship for hexamer complex-

ity will be

Ch = Ch
W

+ Ch
S

+ Ch
R

+ Ch
I

+ Ch
F

= ∆((hδk+k)>1) + ∆(h>(2hδk+k)) + δ(h−k)

+δ(h−k)∆(k>1) + δ(h−k)∆(k>1) + ∆(h>2)

(B.18)

B.10 The number of hexamers N
X

We list the number of hexamers N
X

per hexamer type X:

NW =

(

60(hδk + k)

1 + δk

)

Ch
W (B.19)

NS = 60Ch
S (B.20)

NR = 20Ch
R (B.21)

NI = (h − 1) Ch
I (B.22)

NF =



10(T − 1) −
∑

X∈[W,S,R,I]

NX



Ch
F (B.23)
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B.11 The viruses used in calculating capsid abundance in

Chapter 5

The capsids used to calculate capsid abundances (for each Ch), e.g., in Figures 5.4A

and B.2, were obtained primarily from the virus structure databases VIPER EMDB

[46] and EMDB [81] for EM structures and VIPERdb [46] for X-ray structures; due to

space constraints, please refer to the supplementary material section of (Mannige and

Brooks, 2010, PLoS ONE, in press) for a more detailed description of the virus capsid

structures in table form. Here, we abbreviate that information by providing the virus

families followed by the number of distinct viruses (in brackets) listed in order of their

triangulation (T ) number and (h,k) indices (pT stands for pseudo-triangulation, which

means that all subunits are not chemically identical):

T=1 (1,0): Adenoviridae (1), Birnaviridae (1), Bromoviridae (1), Microviridae (5),

Papillomaviridae (1), Parvoviridae (8), Reoviridae (1), Satellites (3), Sobemoviridae

(1), Totiviridae (2); T=1,pT=2 (1,0): Partitiviridae (1), Cystoviridae (2); T=3 (1,1):

Bromoviridae (4), Caliciviridae (2), Flaviviridae (4), Leviviridae (5), Luteoviridae (1),

Nodaviridae (3), Podoviridae (1), Sobemoviridae (5), Thermococcaceae (1), Tombusviri-

dae (3), Tymoviridae (3); pT=3 (1,1): Comoviridae (5), Picornaviridae (10), Unknown4

[Kelp fly virus] (1); T=4 (2,0): Hepadnavirus (1), Podoviridae (1), Tetraviridae (2), To-

gaviridae (4); T=7 (2,1): Caulimoviridae (1), Papillomaviridae (2), Polyomaviridae (2),

Podoviridae (4), Siphoviridae (2), Unknown3 [epsilon15] (1); T=12 (2,2): Bunyaviridae

(1); T=13 (3,1): Birnaviridae (1), Cystoviridae (2), Reoviridae (6); T=16 (4,0): Her-

pesviridae (1); T=19 (3,2): Reoviridae (2); pT=21 (4,1): Corticoviridae (1); pT=25
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(5,1): Adenoviridae (3), Tectiviridae (2); T=27 (3,3): Caudovirales (1); T=28 (4,2): Un-

known1 [SH1] (1); T=31 (5,1): Unknown2 [STIV] (1); T=147 (7,7): Iridoviridae (1);

T=169 (8,7): Phycodnaviridae (1); T=210 (10,7): Phycodnaviridae (1).

SO LONG, AND THANKS FOR ALL THE FISH!
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