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Predicting the outcome of the growth of binary solids far from equilibrium
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The growth of multicomponent structures in simulations and experiments often results in kinetically trapped,
nonequilibrium objects. In such cases we have no general theoretical framework for predicting the outcome of
the growth process. Here we use computer simulations to study the growth of two-component structures within a
simple lattice model. We show that kinetic trapping happens for many choices of growth rate and intercomponent
interaction energies, and that qualitatively distinct kinds of kinetic trapping are found in different regions of
parameter space. In a region in which the low-energy structure is an “antiferromagnet” or “checkerboard,” we
show that the grown nonequilibrium structure displays a component-type stoichiometry that is different from the
equilibrium one but is insensitive to growth rate and solution conditions. This robust nonequilibrium stoichiometry
can be predicted via a mapping to the jammed random tiling of dimers studied by Flory, a finding that suggests
a way of making defined nonequilibrium structures in experiment.
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I. INTRODUCTION

Molecular self-assembly is the spontaneous organization
of components, which move around under Brownian motion
but are otherwise left undisturbed, into ordered structures.
Self-assembly holds considerable promise for materials sci-
ence [1–4]. The goal of molecular self-assembly in the
laboratory is often to make an equilibrium structure, and the
laws of statistical mechanics indeed dictate that components
undergoing Brownian motion will eventually build themselves
into the structure of least free energy. In practical terms,
however, slow dynamical processes can prevent equilibration
from happening on the time scale available to the process in
question [5]. In such circumstances the processes of nucleation
and growth lead instead to the formation of kinetically
trapped, nonequilibrium structures. Multicomponent systems,
i.e., systems composed of more than one type of component,
are particularly susceptible to kinetic trapping because the slow
rearrangement of component types within a solid structure can
prevent them from achieving their equilibrium arrangement
as the solid structure grows. Frequently, the outcome of the
nucleation and growth of multiple component types is an
ordered crystal structure within which component types are
arranged in a nonequilibrium way [6–10]. Such structures
have potentially useful properties. However, predicting their
component-type arrangements is not possible in general,
because we cannot predict the outcome of self-assembly when
that outcome is not the equilibrium structure.

Here we use simulation and analytic theory to study the
component-type arrangements formed during the growth of
two-component structures within a simple lattice model. In
accord with several experimental results, growth results in
the formation of nonequilibrium structures for a large range of
growth rates and intercomponent interaction energies. In some
regions of parameter space the properties of nonequilibrium
structures vary continuously with growth rate, while in other
regimes of parameter space these properties are insensitive to

*rvmannige@lbl.gov
†swhitelam@lbl.gov

growth rate. This qualitative behavior is similar to that seen
in spinodal decomposition in the Ising antiferromagnet [11].
In a region of parameter space in which the low-energy
structure is a binary “checkerboard” we show that the
grown nonequilibrium structure displays a component-type
stoichiometry that is insensitive both to growth rate and to the
abundance of component types in solution. We show that this
robust nonequilibrium stoichiometry can be predicted via a
mapping to the jammed random tiling of dimers studied by
Flory. These findings suggest a route to the rational design of
defined nonequilibrium structures in experiment.

II. MODEL AND SIMULATION METHODS

Kinetic trapping of component types within growing
multicomponent structures has a simple physical origin—the
slow dynamics of particles within a solid—and so can be
reproduced by simple physical models that account for this
slow dynamics [6–9]. Here we consider a lattice model
of growth similar to the models used in Refs. [10,12,13].
Lattice models have been widely used to study fundamental
processes like nucleation and spinodal decomposition [14–17]
and irreversible growth [18,19]. We focus on growth in a
two-dimensional (2D) system, but we will also present results
for higher dimensions. As sketched in Fig. 1(a) (also see
Fig. S1 [20]), lattice sites can be unoccupied (white) or
occupied by a particle of one of two types (red or blue). Red
and blue particles (or components) experience color-dependent
nearest-neighbor interactions (see Appendix A) of energy
εrr, εbr, and εbb, in units of kBT (which we shall set equal
to unity). On a fully occupied lattice (one without white sites),
and in the absence of a chemical potential difference between
red and blue states these interactions are equivalent to the Ising
model with magnetic field h ≡ (εrr − εbb)/4 and coupling
constant J ≡ εbr/2 − (εrr + εbb)/4 [13,21]. In Fig. 1 we use
J and h to indicate in an approximate fashion the regimes of
phase space considered in recent simulations and experiments.

In the present paper the white, blue, and red sites also
receive energetic penalties μ, − ln f s

b , and − ln(1 − f s
b ),

respectively. Here μ sets the thermal weights of colored
and white sites in notional “solution” (i.e., in the absence
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(a)

(b)

FIG. 1. (a) Schematic of the lattice model and Monte Carlo
protocol we use in this paper to study growth. (b) Distinct kinds of
kinetic trapping can be found for different combinations of red-blue
interaction energies (see definitions of J and h in the text). In this
paper we focus on the region of phase space to the left of the dotted
line, where the low-energy structure is a red-blue checkerboard.
We also comment on growth at points � [13], � [8], and � [10],
considered in previous studies.

of energetic interactions), and f s
b is the notional solution

fraction of colored blocks that are blue. The thermodynamic
parameter μ can also be used to influence the rate of growth of
a colored structure if one starts from a “white” simulation box.
We evolved this model using a grand-canonical Monte Carlo
procedure that respects detailed balance, and that resolves the
stochastic binding and unbinding of red and blue components.
Unbinding dynamics is naturally slow when components
possess many colored neighbors; we also imposed a kinetic
constraint that prevents any change of state of a lattice site
that possesses only colored neighbors. This constraint, which
preserves detailed balance, is intended to model the fact that
relaxation dynamics within solid structures is slow. In what
follows we shall describe growth simulations done in the
presence and absence of the kinetic constraint. The latter
type of simulation represents a convenient way to assess
the outcome of growth on time scales longer than we could
otherwise access. The dynamics of internal relaxation in the
presence and absence of the kinetic constraint is different
(see Appendix A)—it is much faster in the absence of the
constraint—but in some regimes of parameter space the
two protocols lead to similar kinetically trapped structures
(Fig. S2 [20]). At infinite times, i.e., in equilibrium, the two
protocols must produce the same structure, because they satisfy
detailed balance with respect to the same energy function.
In most simulations described below we used a 2D square
lattice of 40 × 400 lattice sites whose long edges were periodic
and whose short edges were not. We began simulations in
the presence of a “seed” at the left-hand short edge of the
simulation box, with the rest of the box left white, so that we
could study growth without waiting for nucleation to happen.

By varying μ we could change the rate of growth of the colored
assembly. In what follows we refer to “growth” simulations
in which the simulation was stopped after 90% of the box
become occupied by colored components, and “maturation”
simulations in which structures grown in this manner were
allowed to evolve for an additional 103–105 Monte Carlo
cycles.

Note that in thermodynamic terms this lattice model is
equivalent to the Blume-Emery-Griffiths model and is similar
to the three-state Potts model (see, e.g., [22,23]). However,
it is perhaps more useful to think of the present model as a
“growing version” of the Ising model. For one, we operate in
a thermodynamic regime in which white states are strongly
disfavored, and so equilibrium lattices are effectively fully
occupied (i.e., all sites are red or blue). The thermodynamics
of the model is then to a good approximation simply that
of the Ising model. For another, the behavior on which we
focus is dynamic in nature, and results from the particular
dynamic protocol we use, which is intended to model the
growth of structures from solution. In particular, this protocol
does not allow the interconversion of red and blue sites (which
would correspond physically to a change of conformation
of a component); if we do allow such interconversion, then
relaxation to equilibrium is rapid, and the kinetically trapped
states described in this paper do not arise.

III. GROWTH SIMULATIONS

Growth carried out using different choices of the inter-
component energetic parameters J and h [24], shown in
Fig. 1(b), is similar in the following respects (see Fig. 2).
At vanishing rates of growth a structure resembling the
equilibrium one is generated; at large rates of growth a
“solid solution” is obtained, i.e., red and blue components
are arranged randomly on the lattice in proportion to their
solution proportions; and at intermediate rates of growth one
obtains nonequilibrium structures that differ from both of these
limiting cases. These nontrivial nonequilibrium structures can
be different in different parameter regimes. For instance,
using the “ferromagnetic” energy scale hierarchy shown by
the symbol � in Fig. 1(b), nonequilibrium structures include
“critical” arrangements in which red and blue component
domains of a broad size distribution are present [10] (this
behavior may be related to that seen in certain irreversible
cellular automata [18,19]). At the parameter combination
labeled �, nonequilibrium structures consist of large domains
of the blue component within which a small red impurity
fraction is found (see Fig. S3 [20]). This impurity fraction
is only weakly sensitive to growth rate over some range of
growth rates, a result that reproduces the qualitative outcome
of growth in experiments and off-lattice simulations done by
other authors [8]. The reproduction of these results by the
present model suggests that it captures key physical aspects of
real growth processes. Finally, at the parameter combination
labeled � in Fig. 1(b), growth results in a nonequilibrium
component-type stoichiometry identical (on an nbo lattice)
to that seen in a certain metal-organic framework; this stoi-
chiometry is insensitive to growth rate and component solution
stoichiometry over some range of those parameters [13]. As we
shall show, robust nonequilibrium stoichiometry is also seen
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(a) (b) (c) (d)

FIG. 2. The outcome of (a) growth and (b) growth-and-maturation simulations for symmetric (top panel: εbr < 0 ≡ εrr ≡ εbb) and
asymmetric (bottom panel: εbr < 0 ≡ εrr � εbb) interaction energy hierarchies reveals the existence of “mature” nonequilibrium structures
whose stoichiometry is insensitive to growth rate [(b), top panel] and growth rate and solution stoichiometry [(b), bottom panel]. Here fb is
the fraction of colored components in the grown structures that are blue, and μ is a chemical potential: the larger is μ, the more rapid is the
rate of growth. Growth simulations were done using three distinct solution fractions of blue components, f s

b = 0.2, 0.5, and 0.8 [red (lightly
shaded), black (solid), and blue (unfilled) circles, respectively]. Panels (c) and (d) show that near-equilibrium and far-from-equilibrium regimes
are separated by a regime of large fluctuations of color and energy (measured using 103 independent simulations at each value of μ).

in other parameter regimes left of the dotted line in Fig. 1.
Here we aim to provide a partial physical understanding of
this behavior.

We start by showing in Fig. 2 the outcome of growth
simulations done in the aforementioned regime of parameter
space, where the red-blue energetic interaction is lower in
energy than both of the like-color interactions. Here the low-
energy structure, and the thermodynamically stable structure
for the parameter values we shall consider, is an alternating
red-blue “antiferromagnet” or checkerboard. In the top panel
of Fig. 2 we show results for the parameter combination
h = 0 (meaning that red-red and blue-blue interactions are
of equal strength), while in the bottom panel we consider an
asymmetric energy hierarchy for which h �= 0. At low rates
of growth, in both cases, the structure generated dynamically,
upon 95% filling of the simulation box [panel (a)], is close
in nature to the equilibrium structure, and so possesses a
blue fraction (fraction of colored components that are blue)
fb = 1/2. For large rates of growth the structures obtained
are kinetically trapped arrangements of components whose
blue fraction is related to that of the notional solution (we
considered three different solution stochiometries, shown as
red [lightly shaded], black [solid], and blue [unfilled] circles).
At intermediate rates of growth the blue fraction of the
grown structure interpolates smoothly between these limiting
cases. Configuration snapshots are shown in Fig. S4 [20].
However, when allowed to further evolve or mature for 104

Monte Carlo sweeps [panel (b)] (in the absence of the kinetic
constraint so as to effectively allow access to longer time
scales), structures generated at intermediate growth rates did
not evolve to equilibrium, but instead became kinetically
trapped in configurations whose blue fractions display plateaus
as a function of growth rate. That is, the stoichiometry of

those nonequilibrium structures is insensitive to growth rate.
Furthermore, in the case of the asymmetric energetic hierarchy
(bottom panel) this stoichiometry was also insensitive to solu-
tion stoichiometry. Near-equilibrium and far-from-equilibrium
regimes are separated by a regime of large fluctuations of color
and energy [panels (c) and (d)], suggesting the existence of a
nonequilibrium phase transition similar to that seen in the
ferromagnetic regime of parameter space [10].

Structures generated dynamically in the presence of certain
energetic interactions therefore display a stoichiometry that is
different from the 1:1 equilibrium one, but that is robust with
respect to changes of growth rate and solution stoichiometry
over a considerable range of those parameters. We call these
robust nonequilibrium stochiometries “magic numbers.” The
existence of magic numbers has potential application for
materials science, because it suggests that one can grow
two-component solids, out of equilibrium, in a predictable
manner. Magic number materials may have already been
synthesized. One particular two-component metal-organic
framework (MOF), called MOF-2000, displays a stoichiome-
try that is robust to solution stoichiometry over a considerable
range [13]. The numerical value of this stoichiometry can be
reproduced by the growth of magic number structures using
the present model on a three-dimensional (3D) framework
whose topology is appropriate to the crystal structure of
MOF-2000 [13].

In physical terms, nonequilibrium structures emerge be-
cause microscopic contacts that are not the equilibrium or
“native” red-blue ones (such as red-red contacts) can appear
stochastically during growth and can become trapped by the
arrival of additional material. In some regions of parameter
space the properties of the resulting kinetically trapped
structures vary continuously with growth rate and solution
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(a)

(b)

(c)

(d)

FIG. 3. Fast growth followed by maturation results in “magic
number” structures. (a) The blue fraction fb for freshly grown
structures varies smoothly with growth rate between equilibrium and
far-from-equilibrium limits. If allowed to evolve further, structures
grown at a range of rates evolve to nonequilibrium structures
that possess the same magic number stoichiometry. (b) and (c)
show “grown” and “mature” structures corresponding to the points
indicated in the top panel [see also Figs. S4, S5, and S6 (artificially
disallowing additional nucleation at high μ also resulted in a similar
magic number plateau; Fig. S7 [20])]. Maturation was stopped at 104

Monte Carlo cycles in (a); stopping the simulations between 102 and
105 cycles yield similar plateaus [(d); Fig. S8 [20]].

stoichiometry; in the magic number regime they do not. As
shown in Fig. 3, magic number configurations, reached upon
maturation of a structure after its initial growth, are long
lived: evolution to the equilibrium checkerboard structure
does not happen on the time scale of simulation [Fig. 3(d);
Fig. S8 [20]). Magic number structures can also be generated
by zero-temperature, single-spin-flip Monte Carlo sampling of
fully occupied lattices; that is, magic number structures are also

(a) (b)

(c) (d)

FIG. 4. (a), (b) In d = 1 the inherent structures of the lattice
model with no white sites are, for the energetic hierarchy εbr < 0 ≡
εrr � εbb, equivalent to those produced by RSA of dimers on a lattice.
(c), (d) This equivalence does not hold in higher dimensions, but
there we can nonetheless use the jamming result to approximate
the inherent structure result via the graphical construction shown
(see text). The resulting prediction, Eq. (1), is in reasonable accord
with inherent structure results for d � 3 (see Fig. 5). Because the
long-time outcome of growth simulations for this energetic hierarchy
are inherent structures of the lattice model with no white sites, the
same magic numbers are seen in our growth simulations, i.e., in
Fig. 2(b) (bottom) and Fig. 3. Thus, the nonequilibrium stoichiometry
resulting from growth can be predicted via a mapping to a jammed
system of dimers.

inherent structures of the lattice Hamiltonian. These inherent
structures are accessible from a wide range of initial conditions
(they have a large basin of attraction), and the numerical values
of the associated magic numbers are dependent upon lattice
connectivity and dimensionality (Fig. S9 [20]).

IV. MAPPING TO JAMMED DIMER SYSTEMS

The interaction energies used to obtain the magic numbers
seen in Fig. 2 satisfy the hierarchy εbr < εrr � εbb. In words,
the blue-red contact is the native or equilibrium one; red-red
contacts are higher in energy but can occur during growth; and
blue-blue contacts are so unfavorable that they cannot form
at reasonable rates of growth. In one dimension this energetic
hierarchy results in the growth of red-blue arrangements, such
as those shown in Fig. 4(a), that map to a tiling of dimers
with voids. “Dimers” are red-blue pairs, and “voids” are
red particles. The particle-to-dimer mapping produces one of
two equivalent void arrangements, as shown. The long-time
outcome of our growth process then becomes equivalent to that
of random sequential absorption (RSA) of dimers on a one-
dimensional lattice. This problem was studied by Flory [25],
who computed the dimer filling fraction to be 1 − e−2. The
mean blue fraction of our equivalent red-blue structure is then
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half of this value, i.e., fb = (1 − e−2)/2 ≈ 0.432. This value
is indeed the mean value of the stoichiometry of inherent
structures of our 1D lattice model (recall that in this regime
of parameter space the matured growth configurations are also
inherent structures of the model with no white sites), which
we show in Fig. 4(b). Thus, the nonequilibrium stoichiometry
resulting from growth can be predicted via a mapping to a
jammed system of dimers.

The equivalence between our growth process and dimer
deposition does not hold in dimensions greater than one.
Nonetheless, we can use the Flory result to estimate
numerically the magic number ratio seen in our growth
simulations in 2D and 3D. Consider a periodic hypercubic
lattice that possesses N lattice sites or nodes in each
dimension, and so has Nd nodes in total. Each node may be
occupied by one red or one blue particle. Let V be the number
of void sites that exist on a connected row of N nodes in any
given dimension, and assume that V/N = e−2 [25]. Assume
further that each dimension is independent, so that each void
site connects to a continuous chain of void sites that extends
independently into each of the remaining d − 1 dimensions
[see Figs. 4(c) and 4(d)]. Thus, each void region contains in
total V Nd−1 voids. Therefore, summed over all independent
dimensions there exist dV Nd−1 voids in total, meaning that
the void density is dV/N = de−2. We therefore predict the
nonequilibrium magic number stoichiometry of our red-blue
structure, grown in d dimensions, to be

f d
b = (1 − de−2)/2. (1)

The magic number structures seen in the 2D growth processes
whose results are reported in Fig. 2(b) (bottom) and Fig. 3
have a stoichiometry (magic number blue fraction) of 0.364 ±
0.0035. The estimate of Eq. (1) is f 2

b = (1 − 2e−2)/2 ≈ 0.365,
which agrees closely with our inherent simulation results
(Fig. 5) and with the plateaus seen in our growth simulations
[Fig. 3 and Fig. 2(b), bottom]. Thus the expression (1) can
be used to predict, approximately, the nature of a kinetically
trapped structure generated in 2D by two-component growth.
In 3D the estimate (1) predicts a magic number blue fraction
of f 3

b = 0.297; our inherent structure simulations done in
3D display a similar magic number ratio of 0.3 ± 0.0026

FIG. 5. Our approximate extrapolation of Flory’s dimer-packing
result, Eq. (1) (red line), matches with reasonable precision the
nonequilibrium magic number stochiometries seen in inherent struc-
tures of the lattice model in d � 3 dimensions when component
interactions satisfy the hierarchy εbr < εrr � εbb. The plateaus seen
in growth simulations in Fig. 2(b) (bottom) and Fig. 3 have numerical
values similar to the point at d = 2 here. For dimensions d � 4 the
analytic and numerical results deviate.

(see Fig. 5). The predictions of Eq. (1) become increasingly
inaccurate as the spatial dimension increases (see Fig. 5),
signaling the breakdown of the approximations we used to
derive the equation. But in dimensions relevant to laboratory
self-assembly, for square and cubic crystal structures, we can
predict approximately the stoichiometry that results from two-
component kinetic trapping by analogy to a jamming problem.

We have shown that of a lattice model of two-component
growth displays a rich range of phenomenology, key aspects
of which reproduce behavior seen in experiments [8,13].
Growth can result in near-equilibrium structures and far-from-
equilibrium structures. In certain regimes of parameter space
the component-type stoichiometry of these nonequilibrium
structures is independent of growth rate and solution stoi-
chiometry, and the numerical value of this stoichiometry can
be predicted via a mapping to a jammed tiling of dimers. These
observations suggest that one can grow, far from equilibrium,
defined two-component structures in experiment.
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APPENDIX: FURTHER DETAILS OF SIMULATION
METHODS

Our lattice model has energy function

E =
interactions∑

i,j

εC(i)−C(j ) +
sites∑

i

μC(i). (A1)

The first sum runs over all distinct nearest-neighbor interac-
tions, and the second sum runs over all sites. C(i) in Eq. (A1)
can be either w (white), b (blue), or r (red), depending on the
color of node i; εC(i)-C(j ) is the interaction energy between
colors C(i) and C(j ); and the chemical potential μC(i) is
μ, − ln(f s

b ) and − ln(1 − f s
b ) for w, b, and r, respectively.

In the absence of pairwise energetic interactions (i.e., in
notional “solution”), the equilibrium likelihood that a given
site will be white, blue, or red is respectively {pw,pb,pr} =
{e−μ,f s

b ,1 − f s
b }(1 + e−μ)−1.

Monte Carlo simulations were done as follows. We started
with a simulation box that is 400 sites wide and 40 sites
high (400 × 40), with the first six columns populated with the
equilibrium checkerboard structure (Fig. S10 [20] shows that
simulations done using larger simulation boxes, e.g., those
of dimensions 800 × 80 and 1400 × 140, result in nearly
identical outcomes). We selected a node at random, and
proposed a change of color of that node. If the chosen node
was white, we attempted to make it colored; if the chosen node
was colored, we attempted to make it white. If the chosen
node was white, then we proposed to make it blue with
probability f s

b ; otherwise, we proposed to make it red. No
red-blue interchange was allowed, mimicking the idea that
unbinding events are required in order to relax configurational
degrees of freedom. To maintain detailed balance with respect
to the stated energy function, the acceptance rates for these
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moves were as follows (�E is the energy change resulting
from the proposed move):

r → w : min
{
1,

(
1 − f s

b

)
exp[−�E]

}
;

w → r : min
{
1,

(
1 − f s

b

)−1
exp[−�E]

}
;

b → w : min
{
1,f s

b exp[−�E]
}
;

w → b : min
{
1,

(
f s

b

)−1
exp[−�E]

}
.

The notional solution abundances of red and blue are con-
trolled by the chemical potential term that appears in Eq. (A1)
and therefore in the term �E. Our choice to insert blue
particles with likelihood f s

b does not by itself result in a
thermodynamic bias for one color over the other (because
this bias in proposal rate is countered by the nonexponential
factors in the acceptance rates). Instead, we bias insertions
so that the dynamics of association is consistent with the
thermodynamics of the model. For instance, if blue particles
are more numerous in solution than red ones, we consider it
to be physically appropriate to insert blue particles into the
simulation box more frequently than red particles. Consider
the limit of large positive μ: the solid solution that results as the
box fills irreversibly with colored particles will have a red:blue
stoichiometry equal to that of the notional solution only if blue
particles are inserted with likelihood f s

b . (As a technical note,
the chemical potential term present in �E ends up simply
canceling the nonexponential factors in the acceptance rates,
but we have chosen to write acceptance rates as shown in order
to make clear which pieces are imposed by thermodynamics,
and which pieces we have chosen for dynamical reasons). Note
that temperature is not defined explicitly, but can be considered
to be subsumed into the energetic parameters of the model.

We also imposed a kinetic constraint that prevents any
change of state of a lattice site that possesses only colored
neighbors. This constraint, motivated by work done on ki-
netically constrained models of glass-forming liquids [26,27],
respects detailed balance. Detailed balance requires that the
rates W of forward and reverse moves between microstates μ

and ν satisfy

ρ(μ)W (μ → ν) = W (ν → μ)ρ(ν), (A2)

where ρ(μ) is the thermal weight of microstate μ. To impose a
kinetic constraint for any particular forward-reverse move pair
(here any move pair in which the site undergoing a change
of state has as its nearest neighbors only colored sites) we
scale both rates W in (A2) by W0 � 1; in this case we take

W0 = 0. This constraint does not affect the ergodicity of the
system provided that one wall of the simulation box is open;
otherwise, microstates corresponding to fully occupied lattices
are disconnected from microstates that possess at least one
unoccupied site. (One could also consider the rule that forbids
a change of state from red ↔ blue to be a kinetic constraint
applied to a more general spin-flip protocol.)

The kinetic constraint is intended to model the fact that
relaxation dynamics within solid structures is slow. Relaxation
dynamics within solid structures is then mediated by white
“vacancies,” which effectively diffuse throughout the structure
mediating local flips red ↔ white ↔ blue. The characteristic
time for a vacancy to diffuse a distance L is ∼L2, and
therefore this, with L being the intervacancy separation, is
the basic time scale for internal relaxation dynamics in the
presence of the kinetic constraint. In some simulations we
omit the kinetic constraint in order to assess the outcome
of slow internal evolution on time scales longer than we
could otherwise access. In this case a similar local dynamics
(red ↔ white ↔ blue) occurs, but now on a basic time scale
that does not scale with the distance between vacancies. In
some regimes such constraint-free evolution leads rapidly
to equilibrium, while in others it does not. For instance,
for the intercomponent interaction energies used to obtain
Fig. S3 [20], grown structures evolve quickly to equilibrium
if the kinetic constraint is not used. The kinetic constraint is
therefore needed in order to capture the physical character
of growth seen in experiments. By contrast, for the interaction
energies used to obtain Fig. 2, grown structures evolved even in
the absence of the kinetic constraint fail to reach equilibrium,
because of the deep kinetic traps associated with interaction
energies large on the scale of kBT . There we can omit the
kinetic constraint in order to effectively simulate longer, and
still obtain nontrivial results.

The parameter values (εbb,εbr,εrr) obtained from
Refs. [10], [8], and [13] and marked in Fig. 1 are
(−3.5,−2,−3.5), (−4.0,−3.21,−2.8) (also see Table S1
[20]), and (70,−7,0).

Inherent structures in d = {1, . . . ,6} used to make
Figs. 4(b) and 5 were obtained using zero-temperature single-
spin-flip moves [13] (also see Fig. S9 [20]) starting from initial
conditions in which all ∼2000 sites of the periodic system are
randomly colored red or blue, with equal likelihood (Fig. S9
[20]). This procedure was carried out until no more spin flips
occurred. At least 100 independent inherent structures were
obtained for each datapoint. As shown in Fig. S9(d) [20], the
average value of the resulting fb is insensitive to system size.
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